
A Variable Word-Width Content Addressable
Memory for Fast String Matching

Geir Nilsen, Jim Torresen and Oddvar Søråsen

Department of Informatics, University of Oslo, P.O. Box 1080 Blindern, 0316 Oslo, Norway

E-mail: {geirni, jimtoer, oddvar}@ifi.uio.no

Abstract:

This work deals with off-loading some time critical
parts in the process of performing intrusion detection
from software to reconfigurable hardware (FPGA).
Signatures of known attacks must typically be
compared to high speed network traffic, and string
matching becomes a bottleneck. Content Addressable
Memories (CAMs) are known to be fast string
matchers, but offer little flexibility. For that purpose a
Variable Word-Width CAM for fast string matching
has been designed and implemented in an FPGA. A
typical feature for this CAM is that the length of each
word is independent from the others, in contrast to
common CAMs where all words have the same length.
The design has been functionally tested on a
development board for a CAM of size 1822 bytes (128
words). This design processes 8 bits per clock cycle and
has a reported maximum clock speed of 100 MHz. This
gives a thoughput of 800 Mbit/s.

1. Introduction

The speed of todays networks is of such a kind that a
general purpose CPU must struggle to process the
network data. The CPU must also have resources left for
other application processes. The amount of processing
required on network data is increasing due to the need
for intrusion detection, cryptographic processing and
more [1].

One way to free the CPU from heavy tasks is to convert
some of the software or parts of a given software, into
hardware. In this work a part of an Intrusion Detection
System (IDS), Snort [2], the string matcher will be
implemented in hardware.

As time goes by, we can expect that new patterns will be
discovered and a reconfiguration of the hardware will
then be required. For research purposes it is expected
that patterns will change frequently, and that they are of
different sizes. A suited hardware technology is Field
Programmable Gate Arrays (FPGA) which is easily
reconfigured to accommodate these changes.

The main contribution of this paper is to implement a
Variable Word-Width Content Addressable Memory
(CAM) in FPGA for string matching. Thereby great
flexibility is obtained with respect to how the Snort rule
set is defined.

In order to design a system for an FPGA, a Hardware
Description Language (HDL) is needed. VHDL was
chosen for this work in spite of its somewhat restricted
programming features. The main reason for this is that
VHDL is well known at the University of Oslo. One
result from this work is that it is now possible to describe
the actual CAM design in VHDL by taking advantage of
all programming abilities that are common to any
programming language. Thereby reconfigurability of the
CAM has been made a simple task.

The CAM is implemented in hardware by using Xilinx
ISE 6.1.03i. With this tool various reports are generated.
These reports were be used for giving estimates of how
much of the resources of an FPGA will be used by each
specific design and the speed obtained.

Section 2 gives an overview of IDS, whereas the CAM
design is described in section 3. The results are
summarized in section 4 and the conclusion is given in
section 5.

2. Intrusion Detection Systems (IDS)

It turns out that there are certain patterns that occur more
often than others in the cases of intrusion. By simulating
attacks it is possible to identify patterns that are well
suited for detection. The next challenge is to monitor a
high speed network looking for these patterns. For this
purpose we use IDS.

Snort is a popular Network IDS (NIDS) because it has an
open source code and runs under most versions of Linux
and Windows. It also offers full control over its rule set
configuration [5]. A rule is also known as a signature and
may contain a string that must be compared with the
contents of an incoming packet. Although Snort has over
1400 rules it is not common to activate all of them at the
same time. An IDS that uses 105 rules is presented in [3].

IDS rely on exact string (content) matching [4][5]. String
matching based on software has not been able to keep up
with high network speeds, and hardware solutions are
needed [6]. A CAM may be used for high performance
systems, but it is known to offer little or no flexibility
[7]. Thus, available CAMs are not suited for
implementations with Snort rules. The CAM design
presented here is well suited for Snort rules and also
solves the limitations reported in [8].

3. Making a String Matcher by using a CAM

A CAM is used to store data, much the same as a RAM.
The write mode of CAM and RAM is similar to some
degree, but the read mode differs significantly. With
RAM we input an address, and get data out. With CAM
we input data, and if this data is stored in the CAM, we
get the address of that data out. There is an address at the
output even if there is no match, so with a CAM we need
a Match bit to indicate if the CAM contains the input
data.

A traditional way of describing the size of a CAM is
given by “width * words”. The width tells the size in bits
of one storage location in the CAM, while words give the
number of storage locations. The advantage with CAM
is that all of its words can be looked up in parallel.

Figure 1 illustrates the basic idea of a string matcher. A
4-input AND-gate, with optional inverters on the inputs,
is capable of matching any 4-bit string. In this case we
could say that we have a CAM of one word that is 4 bits
wide. To match a string of n bits, we would need an n-
input AND-gate.

Data

Match

D
at

a
Sh

ift

Re
g

is
te

r

Figure 1: The Basic Idea of a String Matcher by Using an
AND Gate

The following properties are desired for the string
matching of this work:

1. The length of one string should be independent
of the other strings. That is, the CAM should be
able to compare strings of different lengths at
the same time. As a string has a smallest
element of one character (one byte), the
smallest element in the CAM should be no less
than one byte.

2. The number of words should not be restricted;
for example to 2n. It should be possible to
specify the number of strings by any integer.

3. The comparison between an incoming packet
and the strings must be fast, preferably around 1
Gbit/s.

4. The time spent for changing the content of the
CAM is insignificant, because Snort rules are
rarely changed. Still, the possibility of writing
to the CAM should be kept in order to make the
CAM as flexible as possible.

5. The time spent for making the VHDL code of a
CAM should be short. Also, it should not be
necessary to go into the details whenever a new
CAM is required.

6. Future work: It should be possible to change the
number and length of words in a CAM without
having to reconfigure the FPGA. This will add

further flexibility to the CAM and the previous
item would then be eliminated.

Making a CAM where the width of each word is equal is
easily achieved in VHDL. The lack of common
programming capabilities in VHDL makes it a greater
challenge to design a CAM where each word may have
any given width. Even more complexity is added if the
number of words could be any integer. Many details in
the VHDL code describing such a CAM will have to be
changed each time a new CAM is required. The solution
for this is provided by the following scheme:

Perl (Generate VHDL source code)
 VHDL (Synthesis tools take care of the
 remaining steps)
 (…)
 FPGA Bitstream

All the details that need to be changed for each possible
configuration of a CAM are handled by a programming
language. Perl has been chosen for this work, but any
other programming language would do just as well. The
content of the VHDL CAM files that do not need to be
changed are simply stored as text in the Perl script and
will be written to files at the appropriate locations. The
parts of the VHDL CAM files that need changes are
treated as variables in Perl. For a given CAM these
variables are calculated and then converted to text before
being written to the corresponding VHDL file. In
between the variables, the content that does not need
changes is written directly to file. The Perl script made in
this work is capable of generating VHDL files describing
any CAM (as described in this paper) in less than one
second on a PC with a 466 MHz CPU. The number of
words may be given as an integer input to the script. The
length of each word may be read from file. The file used
for this work is described below.

To obtain a realistic dataset for testing the CAM (by
simulation and by hardware), the following choices were
made:

1. Make a Perl script to scan all Snort rules for
strings that are to be matched.

2. Do not store a string if there are more than one
“content” part in the rule; see Figure 2 for an
example of a Snort rule with one content part.

3. Do not store a string that could generate a
multiple match.

4. Store strings that are at least 4 bytes and no
more than 32 bytes.

5. Write these strings to file.
There were 1083 Snort rule strings that matched the
above criterias.

alert tcp $EXTERNAL_NET any -> $HOME_NET
12345:12346 (msg:"BACKDOOR netbus getinfo";
flow:to_server,established; content:"GetInfo|0d|";

reference:arachnids,403; classtype:misc-activity; sid:110;
rev:3;)

Figure 2: A Typical Snort Rule

A CAM with variable word-width is better described in
bytes, rather than width * words. The amount of logic in
a given FPGA is the only limitation for the CAM as
specified to the Perl script. It is therefore up to the
designer to define the organization of the CAM for the
given application/FPGA, when designing a CAM this
way.

Virtex (-E / II / II Pro) FPGAs are suited for making
logic that is equivalent to wide AND-gates. The basic
components used to make a CAM are LookUp Tables
(LUTs) configured as shift registers (SRL16Es) and
multiplexers (MUXCYs) [10].

By configuring a SRL16E as shown in Figure 3 and
disabling the shift, we get an equivalent logic to that
shown in Figure 1. By connecting a data shift register to
the address bus of the SRL16E, we get a 4-bit CAM [9].
Note that only one ‘1’ has been written to the SRL16E.
For this reason, an SRL16E-based CAM consumes a
relatively large area in an FPGA. It is typical that a CAM
needs more logic per bit than a RAM.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

Q

A0

A1

A2

A3

CLK

CE

D

SRL16E

D Data
CE Clock Enable
CLK Clock
A0-A3 Address
Q Output

Figure 3: SRL16E Configured as an AND-Gate

The SRL16Es are connected in series through a carry-
chain as shown in Figure 4 [10]. Each slice is capable of
representing a CAM of 1 byte (two SRL16Es). The
number of slices required for a word is therefore equal to
the number of bytes in the word. Note that the words
must be stored upwards in columns due to the direction
of the carry-chain.

By connecting the output (Q) of the SRL16E to the
Select (S) input of a MUXCY, we can make a wide AND
gate suited for string matching. If S receives a ‘0’, input
0 (which is grounded) of the MUXCY will be selected.
Otherwise, the CarryIn (CIN) signal is selected. This
signal is then passed on to the next MUXCY. A Match
Enable signal is connected to the first MUXCY. If only
one of the MUXCYs receive a ‘0’ on its CIN, the match
result will be zero. As seen on the figure, we can now
make words (AND gates) of width n bytes.

CIN

COUT

Match Enable

S

0 1
SRL16E

Slice

Slice

S Select
CIN Carry in
COUT Carry out

MUXCY

Match

1

n

Q

Figure 4: Serial Connection of SRL16Es to Make One
CAM-Word

Figure 5 illustrates a (5,9,4,6) byte CAM in read mode.
Each location in the Data Shift Register is connected to
all matching units in the corresponding row as indicated
by horizontal lines in the figure. The CAM has a latency
of two clock cycles from Match enable goes high, until
the output registers of the encoder are updated. By giving
new data to the shift register each clock cycle, we will
get a new valid output for each clock cycle.

CAM

Slice, 2x(SRL16E + MUXCY)

Registers for syncronization

Match Address register

Match register

8 bits

Data

Encoder

1 1 11

Match Enable

D
at

a
Sh

ift
 R

eg
is

te
r

Figure 5: CAM Read Mode

Because there are 16 locations to address in the SRL16E,
16 bits must be shifted in during one write. That is, 16
clock cycles are needed to write one word in a CAM.
The write to the CAM is of less interest in this work, and
details are therefore omitted here.

Figure 6 shows how a CAM has been applied for string
matching in this work. The data to be matched is sent to
the CAM as a Byte Stream. In parallel, it is compared to
all strings (i.e. words) stored in the CAM. If a match is
found, it is indicated by the Match bit. The Match
Address reports the “address” of the string that matched
in the CAM. Exact string matching is performed and
thus, only one (or none) string will give a match. The
string matcher has not yet been integrated with the Snort
program, although this is the intention.

PC

FPGA:
String Matcher
(CAM)

Byte Stream

Match Address

Match

Figure 6: A CAM Applied in a String Matching System

4. Results

Table 1 shows two examples (column 2 and column 4) of
CAM-designs that have been functionally tested in
hardware. The others are synthesized down to the
bitstream that is used for programming the FPGA. The
numbers in row 1, 2 and 3 have been rounded down to
the nearest integer. As the Slices Used increases (row 2)
the room for speed optimization decreases. Note that a
lower speed grade indicates a faster device (-7 is faster
than -6, for example).

Device

Speedgrade

Package

Words

Bytes

Reported Max Speed
(MHz)

(Post-Place and Route

Static Timing Report)

xc
2v

P7

-7

fg
45

6
8

13
4

12
9

10

10
32

xc
2v

60
00

-4

bf

95
7

8
13

4
10

8
1

86
4

xc
2v

P7

-7

fg
45

6
12

8
18

22

10
1

93

80
8

xc
2v

60
00

-4

bf

95
7

12
8

18
22

10

1
13

80

8

xc
2v

60
00

-6

bf

95
7

12
8

18
22

10

5
13

84

0

xc
2v

80
00

-5

ff1

51
7

12
8

18
22

10

2
9

81
6

xc
2v

60
00

-4

bf

95
7

25
6

36
01

96

27

76

8

xc
2v

60
00

-6

bf

95
7

25
6

36
01

10

0
27

80

0

xc
2v

80
00

-5

ff1

51
7

25
6

36
01

10

0
19

80

0 Max speed of incoming
bit stream (Mbit/s)

Slices Used (%)
(Synthesis Report)

Table 1: A Selection of Some Successfully Implemented
Designs

Assuming we get a match for every incoming packet, it
is possible to predict the worst case that this string
matcher should be able to handle; see the upper row of
Table 1. This is an important consideration to make
when designing a system for detecting and handling
massive attacks.

From column 2 we can see that small CAMs are capable
of handling a bitstream of 1 Gbit/s. Column 4 shows an
implementation of a 1822 byte (128 word) CAM that is
capable of processing data at 800 Mbit/s. The remaining
columns shows estimates from other devices.

IDSs based on software only can process at most 100
Mbit/s [11]. From the Table 1 we can see that the string
matcher presented in this paper can perform about 8
times faster than software IDSs. As the string matcher is
often the main bottleneck of an IDS, this design clearly
offers an improvement to IDS.

5. Conclusion

A Variable Word-Width CAM has been designed that is
well suited for string matching with Snort rules. When
taking advantage of a programming tool, the time needed
for making a new CAM, described by VHDL, is less
than one second on a PC with a 466 MHz CPU. The
flexibility of such a CAM, and the short time needed to
make the VHDL-files, will be important for NIDSs since
they may need to be changed frequently. The
implemented architecture functionally tested on the
hardware platform that was chosen for this work can
process 128 words (1822 bytes) in parallel at 800 Mbit/s.
Future work involves making an even more flexible
CAM. It should be able to changing the number of
words, and the length of each word at runtime. That is, a
new CAM could be made without producing new VHDL
files.

6. References

1 Peter Bellows et al. GRIP: A Reconfigurable
 Architecture for Host-Based Gigabit-Rate Packet
 Processing. FCCM 2002.
2 http://www.snort.org
3 Y. H. Cho et al. Specialized Hardware for Deep
 Network Packet Filtering. FPL 2002.
4 C. Jason Coit et al. Towards Faster String
 Matching for Intrusion Detection or Exceeding the
 Speed of Snort. In Proc. of DARPA Information
 Surviability Conference and Exposition, DISCEXII,
 2001.
5 B. L. Hutchings et al. Assisting Network Intrusion
 Detection with Reconfigurable Hardware. In Proc.
 of the 10th Annual IEEE Symposium on Field-
 Programmable Custom Computing Machines.
 FCCM 2002.
6 S. Dharmapurikar et al. Deep packet inspection
 using parallel Bloom filter. In Proc. of Hot
 Interconnections 11 (HotI-11), Stanford, CA, 2003.
7 D. E. Tylor et al. Scalable IP Lookup for Internet
 Routers. In IEEE journal on selected areas in
 communications, Vol. 21, No. 4, May 2003.
8 Shaomeng Li et al. Exploiting Reconfigurable
 Hardware for Network Security. FCCM 2003.
9 J-L Brelet and B. New. Designing Flexible, Fast
 CAMs with Virtex Family FPGAs. Xilinx
 Application Note 203, September23, 1999
 (Version 1.1).
10 Xilinx Virtex-II Pro Platform FPGAs. Functional
 Description. Datasheet ds083
11 M. Gokhale et al. Granidt: Towards Gigabit Rate
 Network Intrusion Detection Technology. FPL 2004.

