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Abstract: 
 
This work deals with off-loading some time critical 
parts in the process of performing intrusion detection 
from software to reconfigurable hardware (FPGA). 
Signatures of known attacks must typically be 
compared to high speed network traffic, and string 
matching becomes a bottleneck. Content Addressable 
Memories (CAMs) are known to be fast string 
matchers, but offer little flexibility. For that purpose a 
Variable Word-Width CAM for fast string matching 
has been designed and implemented in an FPGA. A 
typical feature for this CAM is that the length of each 
word is independent from the others, in contrast to 
common CAMs where all words have the same length. 
The design has been functionally tested on a 
development board for a CAM of size 1822 bytes (128 
words). This design processes 8 bits per clock cycle and 
has a reported maximum clock speed of 100 MHz. This 
gives a thoughput of 800 Mbit/s. 
 
1. Introduction 
 
The speed of todays networks is of such a kind that a 
general purpose CPU must struggle to process the 
network data. The CPU must also have resources left for 
other application processes. The amount of processing 
required on network data is increasing due to the need 
for intrusion detection, cryptographic processing and 
more [1].  
 
One way to free the CPU from heavy tasks is to convert 
some of the software or parts of a given software, into 
hardware. In this work a part of an Intrusion Detection 
System (IDS), Snort [2], the string matcher will be 
implemented in hardware. 
 
As time goes by, we can expect that new patterns will be 
discovered and a reconfiguration of the hardware will 
then be required. For research purposes it is expected 
that patterns will change frequently, and that they are of 
different sizes. A suited hardware technology is Field 
Programmable Gate Arrays (FPGA) which is easily 
reconfigured to accommodate these changes. 
 
The main contribution of this paper is to implement a 
Variable Word-Width Content Addressable Memory 
(CAM) in FPGA for string matching. Thereby great 
flexibility is obtained with respect to how the Snort rule 
set is defined. 

 
In order to design a system for an FPGA, a Hardware 
Description Language (HDL) is needed. VHDL was  
chosen for this work in spite of its somewhat restricted 
programming features. The main reason for this is that 
VHDL is well known at the University of Oslo. One 
result from this work is that it is now possible to describe 
the actual CAM design in VHDL by taking advantage of 
all programming abilities that are common to any 
programming language. Thereby reconfigurability of the 
CAM has been made a simple task. 
 
The CAM is implemented in hardware by using Xilinx 
ISE 6.1.03i. With this tool various reports are generated. 
These reports were be used for giving estimates of how 
much of the resources of an FPGA will be used by each 
specific design and the speed obtained. 
 
Section 2 gives an overview of IDS, whereas the CAM 
design is described in section 3. The results are 
summarized in section 4 and the conclusion is given in 
section 5. 
 
2. Intrusion Detection Systems (IDS) 
 
It turns out that there are certain patterns that occur more 
often than others in the cases of intrusion. By simulating 
attacks it is possible to identify patterns that are well 
suited for detection. The next challenge is to monitor a 
high speed network looking for these patterns. For this 
purpose we use IDS. 
 
Snort is a popular Network IDS (NIDS) because it has an 
open source code and runs under most versions of Linux 
and Windows. It also offers full control over its rule set 
configuration [5]. A rule is also known as a signature and 
may contain a string that must be compared with the 
contents of an incoming packet. Although Snort has over 
1400 rules it is not common to activate all of them at the 
same time. An IDS that uses 105 rules is presented in [3]. 
 
IDS rely on exact string (content) matching [4][5]. String 
matching based on software has not been able to keep up 
with high network speeds, and hardware solutions are 
needed [6]. A CAM may be used for high performance 
systems, but it is known to offer little or no flexibility 
[7]. Thus, available CAMs are not suited for 
implementations with Snort rules. The CAM design 
presented here is well suited for Snort rules and also 
solves the limitations reported in [8]. 



 
3. Making a String Matcher by using a CAM 
 
A CAM is used to store data, much the same as a RAM. 
The write mode of CAM and RAM is similar to some 
degree, but the read mode differs significantly. With 
RAM we input an address, and get data out. With CAM 
we input data, and if this data is stored in the CAM, we 
get the address of that data out. There is an address at the 
output even if there is no match, so with a CAM we need 
a Match bit to indicate if the CAM contains the input 
data. 
 
A traditional way of describing the size of a CAM is 
given by “width * words”. The width tells the size in bits 
of one storage location in the CAM, while words give the 
number of storage locations.  The advantage with CAM 
is that all of its words can be looked up in parallel. 
 
Figure 1 illustrates the basic idea of a string matcher. A 
4-input AND-gate, with optional inverters on the inputs, 
is capable of matching any 4-bit string. In this case we 
could say that we have a CAM of one word that is 4 bits 
wide. To match a string of n bits, we would need an n-
input AND-gate. 
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Figure 1: The Basic Idea of a String Matcher by Using an 
AND Gate 

 
The following properties are desired for the string 
matching of this work: 

1. The length of one string should be independent 
of the other strings. That is, the CAM should be 
able to compare strings of different lengths at 
the same time. As a string has a smallest 
element of one character (one byte), the 
smallest element in the CAM should be no less 
than one byte. 

2. The number of words should not be restricted; 
for example to 2n. It should be possible to 
specify the number of strings by any integer. 

3. The comparison between an incoming packet 
and the strings must be fast, preferably around 1 
Gbit/s. 

4. The time spent for changing the content of the 
CAM is insignificant, because Snort rules are 
rarely changed. Still, the possibility of writing 
to the CAM should be kept in order to make the 
CAM as flexible as possible. 

5. The time spent for making the VHDL code of a 
CAM should be short. Also, it should not be 
necessary to go into the details whenever a new 
CAM is required. 

6. Future work: It should be possible to change the 
number and length of words in a CAM without 
having to reconfigure the FPGA. This will add 

further flexibility to the CAM and the previous 
item would then be eliminated. 

 
Making a CAM where the width of each word is equal is 
easily achieved in VHDL. The lack of common 
programming capabilities in VHDL makes it a greater 
challenge to design a CAM where each word may have 
any given width. Even more complexity is added if the 
number of words could be any integer. Many details in 
the VHDL code describing such a CAM will have to be 
changed each time a new CAM is required. The solution 
for this is provided by the following scheme: 
 
Perl  (Generate VHDL source code) 
 VHDL  (Synthesis tools take care of the 
       remaining steps) 
  (…)   
   FPGA Bitstream 
 
All the details that need to be changed for each possible 
configuration of a CAM are handled by a programming 
language. Perl has been chosen for this work, but any 
other programming language would do just as well. The 
content of the VHDL CAM files that do not need to be 
changed are simply stored as text in the Perl script and 
will be written to files at the appropriate locations. The 
parts of the VHDL CAM files that need changes are 
treated as variables in Perl. For a given CAM these 
variables are calculated and then converted to text before 
being written to the corresponding VHDL file. In 
between the variables, the content that does not need 
changes is written directly to file. The Perl script made in 
this work is capable of generating VHDL files describing 
any CAM (as described in this paper) in less than one 
second on a PC with a 466 MHz CPU. The number of 
words may be given as an integer input to the script. The 
length of each word may be read from file. The file used 
for this work is described below. 
 
To obtain a realistic dataset for testing the CAM (by 
simulation and by hardware), the following choices were 
made: 

1. Make a Perl script to scan all Snort rules for 
strings that are to be matched. 

2. Do not store a string if there are more than one 
“content” part in the rule; see Figure 2 for an 
example of a Snort rule with one content part. 

3. Do not store a string that could generate a 
multiple match. 

4. Store strings that are at least 4 bytes and no 
more than 32 bytes. 

5. Write these strings to file. 
There were 1083 Snort rule strings that matched the 
above criterias. 
 

alert tcp $EXTERNAL_NET any -> $HOME_NET 
12345:12346 (msg:"BACKDOOR netbus getinfo"; 
flow:to_server,established; content:"GetInfo|0d|"; 

reference:arachnids,403; classtype:misc-activity; sid:110; 
rev:3;) 

 
Figure 2: A Typical Snort Rule 



 
A CAM with variable word-width is better described in 
bytes, rather than width * words. The amount of logic in 
a given FPGA is the only limitation for the CAM as 
specified to the Perl script. It is therefore up to the 
designer to define the organization of the CAM for the 
given application/FPGA, when designing a CAM this 
way. 
 
Virtex (-E / II / II Pro) FPGAs are suited for making 
logic that is equivalent to wide AND-gates. The basic 
components used to make a CAM are LookUp Tables 
(LUTs) configured as shift registers (SRL16Es) and 
multiplexers (MUXCYs) [10]. 
 
By configuring a SRL16E as shown in Figure 3 and 
disabling the shift, we get an equivalent logic to that 
shown in Figure 1. By connecting a data shift register to 
the address bus of the SRL16E, we get a 4-bit CAM [9]. 
Note that only one ‘1’ has been written to the SRL16E. 
For this reason, an SRL16E-based CAM consumes a 
relatively large area in an FPGA. It is typical that a CAM 
needs more logic per bit than a RAM. 
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Figure 3: SRL16E Configured as an AND-Gate 
 
The SRL16Es are connected in series through a carry-
chain as shown in Figure 4 [10]. Each slice is capable of 
representing a CAM of 1 byte (two SRL16Es). The 
number of slices required for a word is therefore equal to 
the number of bytes in the word. Note that the words 
must be stored upwards in columns due to the direction 
of the carry-chain. 
 
By connecting the output (Q) of the SRL16E to the 
Select (S) input of a MUXCY, we can make a wide AND 
gate suited for string matching. If S receives a ‘0’, input 
0 (which is grounded) of the MUXCY will be selected. 
Otherwise, the CarryIn (CIN) signal is selected. This 
signal is then passed on to the next MUXCY. A Match 
Enable signal is connected to the first MUXCY. If only 
one of the MUXCYs receive a ‘0’ on its CIN, the match 
result will be zero. As seen on the figure, we can now 
make words (AND gates) of width n bytes. 
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Figure 4: Serial Connection of SRL16Es to Make One 
CAM-Word 

 
Figure 5 illustrates a (5,9,4,6) byte CAM in read mode. 
Each location in the Data Shift Register is connected to 
all matching units in the corresponding row as indicated 
by horizontal lines in the figure. The CAM has a latency 
of two clock cycles from Match enable goes high, until 
the output registers of the encoder are updated. By giving 
new data to the shift register each clock cycle, we will 
get a new valid output for each clock cycle. 
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Figure 5: CAM Read Mode 
 
Because there are 16 locations to address in the SRL16E, 
16 bits must be shifted in during one write. That is, 16 
clock cycles are needed to write one word in a CAM. 
The write to the CAM is of less interest in this work, and 
details are therefore omitted here. 
 
Figure 6 shows how a CAM has been applied for string 
matching in this work. The data to be matched is sent to 
the CAM as a Byte Stream. In parallel, it is compared to 
all strings (i.e. words) stored in the CAM. If a match is 
found, it is indicated by the Match bit. The Match 
Address reports the “address” of the string that matched 
in the CAM. Exact string matching is performed and 
thus, only one (or none) string will give a match. The 
string matcher has not yet been integrated with the Snort 
program, although this is the intention. 
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Figure 6: A CAM Applied in a String Matching System 
 
4. Results 
 
Table 1 shows two examples (column 2 and column 4) of 
CAM-designs that have been functionally tested in 
hardware. The others are synthesized down to the 
bitstream that is used for programming the FPGA. The 
numbers in row 1, 2 and 3 have been rounded down to 
the nearest integer. As the Slices Used increases (row 2) 
the room for speed optimization decreases. Note that a 
lower speed grade indicates a faster device (-7 is faster 
than -6, for example). 
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Table 1: A Selection of Some Successfully Implemented 
Designs 

 

Assuming we get a match for every incoming packet, it 
is possible to predict the worst case that this string 
matcher should be able to handle; see the upper row of 
Table 1. This is an important consideration to make 
when designing a system for detecting and handling 
massive attacks.  
 
From column 2 we can see that small CAMs are capable 
of handling a bitstream of 1 Gbit/s. Column 4 shows an 
implementation of a 1822 byte (128 word) CAM that is 
capable of processing data at 800 Mbit/s. The remaining 
columns shows estimates from other devices. 
 

IDSs based on software only can process at most 100 
Mbit/s [11]. From the Table 1 we can see that the string 
matcher presented in this paper can perform about 8 
times faster than software IDSs. As the string matcher is 
often the main bottleneck of an IDS, this design clearly 
offers an improvement to IDS. 
 
5. Conclusion 
 
A Variable Word-Width CAM has been designed that is 
well suited for string matching with Snort rules. When 
taking advantage of a programming tool, the time needed 
for making a new CAM, described by VHDL, is less 
than one second on a PC with a 466 MHz CPU. The 
flexibility of such a CAM, and the short time needed to 
make the VHDL-files, will be important for NIDSs since 
they may need to be changed frequently. The 
implemented architecture functionally tested on the 
hardware platform that was chosen for this work can 
process 128 words (1822 bytes) in parallel at 800 Mbit/s. 
Future work involves making an even more flexible 
CAM. It should be able to changing the number of 
words, and the length of each word at runtime. That is, a 
new CAM could be made without producing new VHDL 
files. 
 
6. References 
 
1  Peter Bellows et al. GRIP: A Reconfigurable 
 Architecture for Host-Based Gigabit-Rate Packet 
 Processing. FCCM 2002. 
2  http://www.snort.org 
3  Y. H. Cho et al. Specialized Hardware for Deep 
 Network Packet Filtering. FPL 2002. 
4  C. Jason Coit et al. Towards Faster String 
 Matching for Intrusion Detection or Exceeding the 
 Speed of Snort. In Proc. of DARPA Information 
 Surviability Conference and Exposition, DISCEXII, 
 2001. 
5  B. L. Hutchings et al. Assisting Network Intrusion 
 Detection with Reconfigurable Hardware. In Proc. 
 of the 10th Annual IEEE Symposium on Field- 
 Programmable Custom Computing Machines. 
 FCCM 2002. 
6  S. Dharmapurikar et al. Deep packet inspection 
 using parallel Bloom filter. In Proc. of Hot
 Interconnections 11 (HotI-11), Stanford, CA, 2003. 
7  D. E. Tylor et al. Scalable IP Lookup for Internet 
 Routers. In IEEE journal on selected areas in 
 communications, Vol. 21, No. 4, May 2003. 
8  Shaomeng Li et al. Exploiting Reconfigurable 
 Hardware for Network Security. FCCM 2003. 
9  J-L Brelet and B. New. Designing Flexible, Fast 
 CAMs with Virtex Family FPGAs. Xilinx 
 Application Note 203, September23, 1999 
 (Version 1.1). 
10  Xilinx Virtex-II Pro Platform FPGAs. Functional 
 Description. Datasheet ds083 
11  M. Gokhale et al. Granidt: Towards Gigabit Rate 
 Network Intrusion Detection Technology. FPL 2004. 


