e N e S e S S e R B S T R R e S e S R S e R

eas e = B R R R B R B B R B B R R

e e R e e R B R R

A AT B R F gl VI R gt Pl i i A T A B e T A e T e AT AL F R A A B S R R S R R]

e e i il \\\\\ /

R S]

B e e e e e e e b R
g e e T P T g B g g LT P e e g i S Sy

PR T B e R R B e gl Sl T AR 0 B P A T A o Wl R R e R T T ST gl A o A TR B R B

R R A e e

P

dth

Content Addressable Memory (CAM)

-W

Report

g L S

by
Geir Nilsen

o T T A et

A A P TR SR T e e

Cand. Scient

A Variable Word
for Fast String Matching
®

D T N s o s,

e L e oy SEL S

B R
I R)

e R

R R A
R R A e A R e R RN

R e o o B B e B B A A A B SR, . i A i 24

ML A _ Y,

LR R R R e e e R R R

LA A T PR L e e

Abstract

This work deals with off-loading some critical parts in the process of performing intrusion
detection from software to reconfigurable hardware (FPGA). Signatures of known attacks
must typically be compared to high speed network traffic, and string matching becomes a
bottleneck. Content Addressable Memories (CAMs) are known to be fast string matchers, but
offer little flexibility. For that purpose a Variable Word-Width CAM for fast string matching
has been designed and implemented in an FPGA. A typical feature for this CAM is that the
length of each word is independent from the others, in contrast to common CAMs where all
words have the same length. To be able to effectively reconfigure the CAM, a software
technique has been developed for creating the VHDL code. The CAM design has been
simulated with Model Technology ModelSim 5.6f, and synthesized by Xilinx ISE 6.1.03i. It
was then loaded into a Virtex-1l Pro (P7) FPGA. The design has been functionally tested on a
development board for a CAM of size 1822 bytes (128 words). This design processes 8 bits
per clock cycle and has a reported maximum clock speed of 100 MHz. This gives a
throughput of 800 Mbit/s. One important part of this work has also been to develop circuits
for hardware testing purposes.

Acknowledgements

Unconditional thanks goes to my supervisors Oddvar Sgrasen and Jim Torresen. First of all
for accepting me as their student. Then for all the highly intelligent conversations along the
way through this project. For every heavy step in the creative process of this project, my
courage was always increased after a discussion with my supervisors. These conversations
are, without any doubt, the main reason that this project is now completed. All my fellow
students and the employees that make up the good working environment we have at this
group, deserves a thank also. The time spent here will be remembered as a good time.

Good Luck to you all!!!

1
2

Contents:

INTRODUCTION ...ttt ettt ettt ettt e e s s e e ettt eeesesse e reteeeessssassrrareeeeeessanas 1
INTRUSION DETECTION SYSTEMS (IDS)oooiiiiiieiie et 3
A R 1N 0] 010 o4 1 (0] 3
2.2 CATEGORIESOF IDS ..., 3
2.2.1 Network-Based IDS (NIDS)cccoiiiiiiiiiiie et 4
Denial of SErVICE (DOS)coiieiiiiiiieieeie et 4
UNAUENOTIZEO ACCESS .. vvveeiiieeeeeeeeiieeet et e e st s eee ettt eeesassearareeeeessssssersaereesesssnaaes 5

1= 1 TR 5

2.2.2 HOSt-Based IDS (HIDS)ccoiiiiiieiieie ettt 5
SECUNLY HAZANS ...t 6

Changing Contents Of DAtaccceviriirieiieiieiee e 7

1= 1 TR 7

2.2.3 Distributed IDS (DIDS)cooiiiiiiieieiie ettt 7

2.3 SIGNATURES. .. oottt 8
2.3.1 INIDS SIQNALUIES.....ccueiitieiieiiesiee it siee sttt sttt sttt e st esbe e e sreenas 8
2.3.2 HIDS SIQNALUIES.....ccueiiiietieie ettt sttt sttt sbe e sreeeas 9

2.4 DETECTION MECHANISMS.....coiiiiiieeee ettt 10
2.4.1 Signature Detection MeChaniSMS...........ccooieiiiiiiiiiiesie e 10
2.4.2 StatiStICAl ANAIYSIS ..o e 10
2.4.3 MEtalanQUAGEooveeiiiieiie ittt 10
2.4.4 Artificial INtelligenCe (Al) ..o 10

2.5 A LIGHTWEIGHT NIDS CALLED SNORT ..coiiiiieeee ettt 11
RECONFIGURABLE HARDWARE ...ttt 15
3.1 BRIEFHISTORY oo, 15
3.2 THE CHOICE OF A RECONFIGURABLE HARDWARE PLATFORMoooooeiiieeeieeeeeeeeeeeee 22
3.3 SOME DETAILS OF XILINX VIRTEX-Il PROFPGAS......coooiiiii, 22
MAKING A STRING MATCHERooo oottt ettt n e 27
4.1 STRING MATCHINGooiieieeeeeeeeeeeeeee e 27
4.2 DESIGNING A CAM FOR STRING MATCHING WITH SNORTooovviiiiiiiiieeeeeeeeeeeeeeeeeeeee 29
4.2.1 Requirements for a CAM used as a Snort String Matcher............ccccoceveeneee 29
L = d I 1 TR 30
4.2.3 Configuring SRL16ES @S CAM-WOIS........cccoeiiiiiriieieiie e 32
424 CAM READ MOUE ...ttt ettt e e e et e e e e e e e re e rreeeees 34
4,25 CAM WIIE IMOUE ...ttt et e e e e e e et r e e e s s reeb e e e e eees 34

4.3 TEST OF THE DESIGN BY SIMULATION......coittiiiiiiiiie ettt ettt 37
4.4 FUNCTIONAL VERIFICATION OF THE CAM DESIGN INFPGA.......oooiiee 39
MAKING AN RS232 CONNECTIONcoioiiii ittt 43
5.1 HARDWARE SOLUTIONSoiiiitiie ettt ettt ettt ettt ettt ettt 43
5.1.1 Light Emitting DI0deS (LEDS)ccueuiiiiiieieiie e 45
5.1.2 CPU RESEL PUSH BULION.....ciiieiiiiieiieiiee ettt et e e raee e e e e 46
5.1.3 USEIr PUSH BUIONS ...ttt ettt et e e e n s sttt e e e e s e nensabnreeeeeees 46
5.1.4 Dual In-Line Package (DIP) SWItChEScccooviiiiiiiiiiie e, 47
5.1.5 Liquid Crystal Display (LCD).....ccccoeiiriiiiieiieie e 48
5.1.6 RS232 —UART COMMUNICALION ...vvvviiieeeeiiieeiieiieeee e e s eeeereeee e s e e e s ssnnnreeeeeees 49
RS 23 2R K ittt e ettt e e e a e ——raaaaaaaa 50

RO Y Y 1 TP 51

Testing the RS232 Communication between the PC and the FPGA 52
Compatibility Mismatch between the UART, RS232RX and RS232TX....... 53

5.1.7 MAXS3B221C I MAX3B223C....ociiiiieieieiieeie e 53

5.2 SOFTWARE SOLUTIONS ...uttiiiitiiesuietesiteessiteeesiteesssseessiseesssesssssessnssesssseessnseesssseesnsnessnnns 55

R = 1 U I 1 TSSO 59
6.1 ESTIMATES OF MAXIMUM PERFORMANCEccveuiiieieiesiesiesresseeeeeessesaesnesnesresneenens 59
6.2 CONSIDERATIONS OF PERFORMANCE0ciutiteiteetiesieiessestessessessseseessessessessessessessesseens 61

6.2.1 The Delay Through one Word in CAMcccooeiiiieiieene e 61
6.2.2 The Read and Write Pathcccooviiiiiiice e 61
6.2.3 Optimizing the ENCOENcccveiieii e 62

A O 1 N[@ U] @] S 63

8 APPENDIXESoooii ittt sttt sttt benre e ne e 65
N 1 B R @] SRS 65
B EXPLORING THE PROPERTIES OF AN SRL16E BY SIMULATIONcovevveiierieiiniieeireieenins 67
C ASTATE DIAGRAM FOR A NON-SEQUENTIAL FSM......cccoiiiiiiiiicececc e 69
D A WAY TO DESCRIBE A SEQUENTIAL FSM....cooiiiiiiiiiece e 71
E DETAILSOF THE UART oottt enaene s 73
F SOURCE CODE-.......cititiitieuieieitestestestestestestaesaesae s e stestestestesteeseasaesaessesestestessesresseasaanens 75

S O N |V SRS 75
CAMAALALP .o 75
(0721 10 Fo U e U SRS 77
CaAM_VNALPL ..o 78
(o= T 1 (0] IR o SRR 100
CaAM_WOFAS. VIO ...t 102
(o= T ALY 0 0 IRV o To ISR 103
CaAM_DASIC.VNAviiiie e e 104
(010] 0T 0T L= IR o PSR 105
(010101 (=T PRV oo PSSR 107
0 L=Tol0 o [TV oo SRS 108
T ol0 0 (=Y oo OSSR 109
COMPONENTS. VIR, ..o 111
th CaM_tOP.VN ..o 113
th CamM _tOP.FAO....ocieceec e 116
F.2 Modules for DebUGQINGccoviiiiieiice e 118
oo A oo USSR 118
PBULLON. VN ...t 123
led _flash.Vhdooviiecee e 125
F.3 The PC — FPGA INErfaCeccceeiveiieicie e 127
0 3 oSS PSSSSN 127
Y% 1A G oo USSR 144
Y YA o A1 o USSR 148
devhoard.Vhdc.ooveiee 151
HASLI28.VNG ..ot 156
COMPONENTS. V. ..o 164
deVD0Ard.UCT ..o s 165
F.4 Source2html CONVEIEIS.......ccviiiecieee e 167
SPC2NTMIELCSS 1.ttt nre e re e e 167
VRAIZNEMI L 168
] (024 1110 RSP 172
TO ML o e s 175
F.5 Optimization of Components in CAMcccoceiieeieiie s 176
g ole o (=T o] o] ALY o ST 176

9 BIBLIOGRAPHY ..o 179

FIGURE 2.1: AN EXAMPLE OF ANIDS[8]cuviiiiiiiiieiiesieee e 4
FIGURE 2.2: AN EXAMPLE OF A HIDS[8]oviiiiiiiieiieeee e 6
FIGURE 2.3: AN EXAMPLE OF ADIDS[8]cuviiiiiiiieiieit et 8
FIGURE 2.4: SNORT ARCHITECTURE[8] .eeuviiieiiieitieie sttt 11
FIGURE 2.5: THE PREPROCESSOR OF SNORT[8] ... veetiiiieiiieiisiie sttt 12
FIGURE 2.6: THE DETECTION ENGINE OF SNORT[8] ...vviitieiiiiieiiieiesie e 12
FIGURE 2.7: THE ALERTING COMPONENT IN SNORT[8]ceiuiiiiiiiieiiiie e 13
FIGURE 3.1: PLA [13] ittt ettt sttt ettt et nne e nbe et nnes 16
FIGURE 3.2: PAL [13] .ottt ettt ettt ettt et ene e nte et e 16
FIGURE 3.3: PLD [13] .ot ieeiieie ittt sttt sttt bbbt nne e st nnes 16
FIGURE 3.4: XCO95108 CPLD [13] .. vveiiieiiieiiee sttt ettt ettt 17
FIGURE 3.5: LUT [L3] .o iieitiiie sttt sttt bttt nne e st enes 18
FIGURE 3.6: XC4000 CLB [L13]...eiteeieiieiiieie sttt sttt nns 19
FIGURE 3.7: A GENERIC FPGA ARCHITECTURE [13] ...eiiiiiiiiesiieie e 19
FIGURE 3.8: AN OVERVIEW OF A VIRTEX-1I PROFPGA [L17] ..eoiiiieiiiiieiee e 23
FIGURE 3.9: FAST CARRY LOGIC PATH IN A CLB [17] eooviiiiiieeeee e 24
FIGURE 3.10: SLICE [L7] e eeitteie ettt sttt sttt ettt eeeneennes 25
FIGURE 3.11: LOGIC CELL [17] 1tetitteiiitie sttt sttt sttt 25
FIGURE 3.12: INPUT/OUTPUT BLOCK [L7] .eiueiitieiiieie ettt 26
FIGURE 4.1: A TYPICAL SNORT RULE (SIGNATURE) ...c.uviiuiiieiteesteaseesieesieassessesstessessessseseessesses 27
FIGURE 4.2: THE BASIC IDEA OF A STRING MATCHER BY USING AN AND GATEcoooevveeeennn. 27
FIGURE 4.3: STRING MATCHING TARGETED FORIDS ..., 28
FIGURE 4.4: CAM/RAM READ MODE [15]....iiiiitiiiiiie ettt 28
FIGURE 4.5: A CAM APPLIED IN A STRING MATCHING SYSTEM ...coooiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 29
FIGURE 4.6: SRL16E BLOCK LEVEL SYMBOL....coiiiiiiei ettt ettt ettt 31
FIGURE 4.7: LOOKING INSIDEOF AN SRLIBE ... 32
FIGURE 4.8: SRL16E CONFIGURED AS AN AND-GATEoooo oo 33
FIGURE 4.9: SERIAL CONNECTION OF SRL16ESs TO MAKE ONE CAM-WORDoooovveeeeeeennn. 33
FIGURE 4.10: CAM READ IMODE ... oot 34
FIGURE 4.11: DETAILED LOOK OF A CAM INWRITE MODE........oooiiiiieeeeeeeeeeeeeeeeeeee 35
FIGURE 4.12: COUNTER ..ottt ettt ettt ettt ettt 35
FIGURE 4.13: 4-BIT COMPARATOR ... ie oottt ettt ettt 35
FIGURE 4.14: CAM WRITE MODE OVERVIEWccooiiiie ettt ettt ettt ettt ettt 36
FIGURE 4.15: SIMULATION OF A 134 BYTE (8-WORD) CAM DESIGN.......ccceeiuiiiieieniienieeie e 38
FIGURE 4.16: VERIFICATION OF CAM IN HARDWAREoooiiii oot 40
FIGURE 4.17: AN XC2VP7 CONFIGURED WITH A CAM OF 1822 BYTES (128 WORDS)............ 41
FIGURE 5.1: VITEX-11 PRO DEVELOPMENT BOARD [19] ...ccoviiiiiiiiieiie e 44
FIGURE 5.2: P160 COMMUNICATIONS MODULE [20]....cciiiiiiiiiiieiesie e 45
FIGURE 5.3: ONE LED CONNECTED TO AN HO.cciiieiiii ettt ettt e e 45
FIGURE 5.4: CPU RESET PUSH BUTTONcoiiiieee e 46
FIGURE 5.5: ONE USER PUSH BUTTON ... ooii ettt 46
FIGURE 5.6: TESTOF LED FSM AND PUSH BUTTON FSM ..o, 47
FIGURE 5.7: ILLUSTRATION OF ONE SWITCH INTHE DIP ..o, 47
FIGURES.8: LCD FSIM ... 48
FIGURES.9: TESTING THELCD FSM ... 49
FIGURE 5.10: RS232RX VS. UART ..o, 50
FIGURE 5.11: BLOCK LEVEL DIAGRAM OF THE RS232RX MODULEooooviiieeieeeeeeeeeeeeeee, 51
FIGURE 5.12: RS232T X VS. UART .o, 51
FIGURE 5.13: BLOCK LEVEL DIAGRAM OF THE RS232TX MODULEoooooieeeeeeeeeeeeeeeeeeeeeee 52
FIGURE 5.14: COMPATIBILITY MISMATCH ...coiieieeeee et 53
FIGURE 5.15: TEST OF THE RS232 COMMUNICATION ...cotiii ettt ettt 54
FIGURE 5.16: ACCESS TO SERIAL PORTS ARE DENIED WITH LITTLE INFORMATIVE MESSAGES 55
FIGURE 5.17: RUNNING BORLAND C/C++ UNDER WINDOWS XPovvviiiiieiiiieeeieeieeeee e 57
FIGURE 5.18: IDS.EXE RUNNING IN 16-BIT MODE UNDER WINDOWS 95/2000/XPovveunn.. 58

FIGURE 8.1: SIMULATION OF ONE SRLIBEot a e e e e eeaens 68

FIGURE 8.2: PUSH BUTTON FSIM DIAGRAMcoiiiiiiiiiii ittt 69

FIGURE 8.3: LCD WRITE TIMING DIAGRAMccuiviiiiiiiiieieieieetete ettt 71
Tables

TABLE 3.1: SUMMARY OF (RE)PROGRAMMABLE DEVICES.......cccceevieiieiereiisescieiesesesseesesesnens 21

TABLE 5.1: THE RELATION BETWEEN UART AND FPGA COMMUNICATION ...cocvvveiecvivereraan. 49

TABLE 6.1: A SELECTION OF SOME SUCCESSFULLY IMPLEMENTED DESIGNSc.coovvvrverennnen. 60

TABLE 6.2: DELAYS THROUGH ONE 32-BYTE WORDcocvvuiriieiiiiecicieeies et 61

TABLE 8.1: LCD WRITE TIMING PARAMETERSovuiuiteteiieesietesess st sesss s s e ssens 71

TABLE 8.2: UART SERIAL PORTS OVERVIEWciiuiiiiiiiiieiiiieesiieessineessineesisessieessnseeesnneessssee s e 73

1 INTRODUCTION

The speed of a network is today of such a kind that a general purpose CPU must struggle to
process the network data. The CPU must also have resources left for other application
processes. The amount of processing required on network data is increasing due to the need
for intrusion detection, cryptographic processing and more [1]. The focus of this project is
intrusion detection.

It turns out that there are certain patterns that occur more often than others in the cases of
intrusion. By simulating attacks it is possible to identify patterns that are well suited for
detection. The next challenge is to monitor a high speed network for these patterns. For this
purpose we use Intrusion Detection Systems (IDS).

Snort [10] is a popular Network IDS (NIDS) because it has an open source and runs under
most versions of Linux and Windows. It also offers full control over its rule set configuration
[3]. A rule is also known as a signature and may contain a string that must be compared with
the contents of an incoming packet.

IDS rely on exact string (content) matching [2][3]. String matching based on software has not
been able to keep up with high network speeds, and hardware solutions are needed [4].
Content Addressable Memory (CAM) may be used for high performance systems, but it is
known to offer little or no flexibility [5]. Available CAMs are not suited for implementations
with Snort rules. Making a more flexible CAM is therefore the primary target of this project.
The CAM design presented in this report also solves the limitations of CAM as reported in

[6]

One way to free the CPU from heavy tasks is to convert some of the software or parts of a
given software, into hardware. In this project a part of Snort, the string matcher, will be
implemented in hardware. A part of the open source of Snort will have to be changed and
recompiled in order to use the hardware string matcher. The string matcher is then supposed
to run in hardware in combination with the recompiled software. Making changes in the
source of Snort is beyond the scope of this project.

As time goes by, we can expect that new patterns will be discovered and a reconfiguration of
the hardware will then be required. For research purposes it is expected that patterns will
change frequently. A suited hardware technology for this purpose seems to be Field
Programmable Gate Arrays (FPGA). An FPGA is easily reconfigured to accommodate these
changes.

In order to make a design that can be used with an FPGA, a Hardware Description Language
(HDL) is needed. HDLs known to the author are Vendors HDL (VHDL), Verilog and Handle-
C. VHDL is the only HDL from which a first hand knowledge is available. Describing a
flexible CAM with a programming language would be of a trivial matter. However, VHDL
lacks programming abilities. It is possible that Verilog or Handle-C has the desired
programming abilities, but VHDL was still chosen for this project. The main reason for this is
that VHDL is well known at the University of Oslo. If there should be any problems with
developing the design presented in this report it is more likely that useful hints could be
received when using VHDL. The secondary target of this project is therefore to come up with
a solution on how to take advantage of all programming abilities that are common to any
programming language, in relation with VHDL.

The CAM will be simulated with a software called ModelSim 5.6f. When the simulation is
done and confidence to the design has been achieved, it will be implemented in FPGA
hardware. The VHDL-files describing the CAM and the control logic needed to make the
CAM work will be implemented in hardware by using Xilinx ISE 6.1.03i. With this tool
various reports are generated. These reports will be used for giving an estimate of how much
of the resources in the FPGA that will be used in relation with one specific design. A
maximum performance estimate will be provided also.

In summary:

The primary target of this project is to make a CAM that is capable of doing string matching
with Snort rules. The secondary target of this project is to solve limitations in relation with
programming abilities in VHDL.

Chapter 2 introduces IDSs.

Chapter 3 introduces reconfigurable hardware and chooses the hardware platform for this
project.

Chapter 4 presents the solution for the primary target.

Chapter 4.2.1 presents the solution for the secondary target.

Chapter 5 illustrates some details necessary to test the solution of the primary target.

Chapter 6 presents the results, and a brief discussion of these.

Chapter 7 gives a conclusion.

2 INTRUSION DETECTION SYSTEMS (IDS)

One event for motivating research on IDS took place February 9, 2000. Amazon.com, E-
trade, and other pioneering electronic commerce companies got hit with a distributed denial of
service attack that collectively cost several million dollars. This is believed to have changed
the nature of electronic commerce for all future by highlighting the importance of effective
detection and response in any successful on-line business [7].

2.1 Introduction

Intrusion detection has existed as a research area since the middle of the 1980s. Early systems
had bad user interfaces. They were also unable to be used in environments outside those for
which they were designed and could monitor a very small number of targets.

As electronic commerce dominates the economic landscape and drives the growth of the
Internet, the interconnectivity of computers for businesses has become an important factor for
success. We are connected to our partners, suppliers, customers and even our competitors
through the Internet. To live with all of these connections, businesses have to develop a
degree of trust based on computer security controls. Trust is enhanced by verification that the
control system works properly. Verification is provided by intrusion detection.

The disciplines of computer security address three fundamental needs: Prevention, Detection
and Response. They are all important for a reliable protection. However, for the last 30 years,
most of the resources have been spent on prevention. The attempt has been to prevent threats
so that detection and response would not be necessary. Unfortunately, prevention methods
have not been able to give an acceptable level of security [7].

2.2 Categories of IDS

Three categories of intrusion detection technologies are host, network and distributed
intrusion detection [8]. Common to all intrusion detection technologies is that they are based
on analyzing a set of discrete, time-sequenced events for patterns of misuse [7].

2.2.1 Network-Based IDS (NIDS)

Intrusion detection is network-based when the system is used to analyze network packets.
Network packets can be derived from the output of routers and switches, but they are usually
sniffed off the network. The most common protocol targeted in commercial products is
TCP/IP, but others may be available [7]. Figure 2.1 shows an example NIDS [8].

Internet

e

Firewall

| ----- M ios
=

Figure 2.1: An Example of a NIDS[8]

The following attacks are some of the most common ones related to network traffic. Most
network-based attacks are directed at operating system vulnerabilities. In most cases these
attacks would be impossible to detect with host-based technologies [7].

Denial of Service (DoS)

DoS attacks are named so because they result in a resource not being available to service its
users. DoS attacks come in many forms and different levels of severity. Insiders can cause
DoS attacks as well as outsiders, but these types of attacks usually leave many clues, so
malicious DoS attacks are usually initiated by anonymous outsiders. The packets that deliver
the attack usually carry many characteristics that can be detected with a NIDS, thereby
making it an effective tool for detecting these attacks.

Packet flooding is a simple DoS technique that involves sending as many packets as you can
to a single network device. This is done until the device either crashes because it can’t handle
the load or becomes so slow that legitimate user requests can’t get through. This is not a very
sophisticated attack, and it is easy to detect. Defending is done by denying access to the
source computer sending the packets. However, if the attacker is spoofing the source address,
it may be very hard to find out were the packets are coming from [7]. Spoofing is the creation
of TCP/IP packets by using somebody else's IP address. Routers use the Destination IP
address in order to forward packets through the Internet, but ignore the Source IP address,
which is only used by the destination machine when it responds back to the source [9].

A special case of packet flooding is the Distributed DoS (DDoS) attack in which a number of
computers are used to attack at the same time. Defending against DDoS can be difficult if the
IP addresses are spoofed. NIDS is not a perfect tool for this type of attack, but it is still vital in
both detection and response [7].

There are a number of DoS tools that uses a technique with malformed packets. They are
available on the Internet and go by names like land, bank and bink. Malformed packets come
in a variety of shapes and sizes with intent of causing a protocol stack to crash. Network
protocols are made of complicated pieces of code, and it is difficult to handle all the different
types of error conditions that can arise. In most cases, programmers do not attempt to handle
impossible situations such as null arguments in critical fields. Hackers take advantage of this
by creating null arguments in these fields, causing the protocol to fail. Results of doing so
range from hung networks to machines that crash.

Unauthorized Access

Unauthorized password file downloads gives attackers the ability to compromise other
systems. This is one of the traditional data thefts that a NIDS is capable of detecting. The
Network Security Monitor, one of the first NIDS available, looked for the pattern
“letc/passwd” in FTP traffic from the outside of the network. It was simple but effective.

Outsiders rarely break into intended targets from their home machines. Usually there is a
complicated path via computers that have been hacked, leading from the attacker’s machine to
the intended target of misuse. Also, once a computer has been compromised it usually
contains information that opens up several other computers within the same organization.
These types of attacks are identifiable by the patterns of traffic leading out of the network.

Unauthorized access occurs when outsiders come in over the network and log into a system
uninvited. Once they have logged in they can be tracked more effectively with a Host-Based
IDS (HIDS). The goal in this case is to detect the outsider with a NIDS before access is given,
or in the process of giving access. Unauthorized access over the network should not be
possible. Unfortunately, the tools and programs used to share resources and information over
networks has a number of security vulnerabilities that can be exploited to allow access. Many
older programs were not designed with any security in mind, leaving them wide open for
abuse [7].

Theft

There are countries that have trained cyber spies who steal data by committing industrial
espionage against other nations. There have also been cases of freelance information brokers
who steal information and sell it to the highest bidder.

Another type of theft is stealing bandwidth and disk storage. Big companies tend to have a lot
of bandwidth that may not be used at all times. Clever attackers will take over a machine and
run whole businesses from networks they do not own. Attackers usually get caught when their
business gets too popular and the traffic becomes noticeable [7].

2.2.2 Host-Based IDS (HIDS)

Intrusion detection is host-based when the system is used to analyze data that originates on
computers (hosts), such as application and operating system event logs [7]. Figure 2.2 shows
an example of a HIDS. A HIDS protects only the one computer at which it operates. This is a
major difference from NIDS [8].

Internet

e

M Firewall

HIDS

Web rver Mailerver Weerver DNS

TTTTTTT

HIDS HIDS HIDS HIDS

Figure 2.2: An Example of a HIDS[8]

Despite the popularity of NIDS, host-based monitoring is becoming more important because
of the threat from the insider. Each of the following examples represents a measurable loss
and would be nearly impossible to detect with a NIDS [7].

Security Hazards

Abuse of privilege is when a user has root, administrative or some other privilege and uses it
in an unauthorized manner. The distribution of privileges in a system is a security risk by
itself. A HIDS is operating on the host where the privileges are granted to the user.

Procedures usually exist to request, document, and create new accounts. Still, administrators
have the ability to create accounts without going through these procedures. For example,
while installing a software package, the instructions may suggest that the software agent
needs an account added to operate successfully. Most administrators will just add the account
using their privilege without going through the formal procedures. It is now an undocumented
account on the system that only the administrator knows about. If the administrator has to
leave the company and his accounts were to be disabled as he walked out the door, there
would still be one active account left.

Most organizations have policies in operation to delete or disable accounts when individuals
leave. But these procedures may take time, leaving a possibility for the ex-employee to access
the account for still some time.

Sometimes contractors get elevated privileges. This usually happens when an administrator
gives a contractor elevated privileges to install an application. Most security policies restrict
non-employees from having root or administrator privileges, but sometimes it is easier to
elevate the user and then reduce privileges later. The security hazard here is that the
administrator easily forgets to remove the privileges.

In large companies the lock of screen savers keeps sensitive data safe when people get up
from their desks for a short period of time. As a result, many security policies require that the
lock of screen savers should be enabled. Unfortunately, it can be annoying if every time you
turn around you have to type your password again. This is why many choose to disable the
lock. A HIDS can be used to detect users who turn off their screen lock [7].

Changing Contents of Data

Some hacks, for example against government agencies, can result in nude pictures and
uncomplimentary remarks posted to their Web sites. Although these attacks originate outside
the network, they are executed on the machine itself through the hard disk. This does not
always mean that there has been a login. If the NIDS set up to protect the Web site does not
detect an unauthorized change on the site, a HIDS is the only way to determine that your Web
site is now insulting your customers rather than inviting them in.

A system hastily rebuilt can end up with the registry open to the network. In early versions of
Windows NT the default state of the system was to have the registry open to the network.
This has been corrected in later versions, but it is still wise to monitor for any default
configurations that are considered insecure [7].

Theft

Personnel records are a significant concern of responsibility. Unauthorized release of personal
records of any kind, including medical records, can result in lawsuits. All accesses to sensitive
records should be monitored by a HIDS.

Observing the access patterns to selected files can indicate users who are scanning the
network for interesting information. The net result of these attacks can be very minor, such as
a user pushing the limits of his privilege to gather information for a proposal. They can also
be very severe, such as an information broker or any other person conducting industrial
espionage [7].

2.2.3 Distributed IDS (DIDS)

Groups of IDSs functioning as remote sensors and reporting to a central management station
are known as DIDS. In Figure 2.3 we can see a DIDS with four sensors and a central
management station. The individual sensors in a DIDS can be NIDS, HIDS or a combination
of both. The rules for each sensor can be chosen independently from the others. Alerts are
forwarded to the central management station, thereby notifying the administrator. Common to
all DIDSs are that the distributed sensors report to a central management station [8].

Internet

NIDS 1 Firewall

:

Weberver Maierver
NIDS 3
_*m*__

"FT*TTTTT'

S

Private Management Network Private Management Network

Z
=

Management
Station

Figure 2.3: An Example of a DIDS[8]

2.3 Signatures

Signatures are deterministic because they identify patterns that are predefined. This makes
signatures an interesting field of research. Signatures are also known as rules or rule-based
systems. When rules are triggered, an alarm is generated, a response is executed, a
notification is sent, or some other action takes place. The characteristics that make up a good
rule mechanism are customizability and ease of use [7].

2.3.1 NIDS Signatures

NIDS signatures have two basic forms; patterns within the packet contents and patterns within
the header information. Encryption eliminates the ability to see the packet contents. If the
system being monitored uses encryption, header analysis is regarded to be the most reliable
choice.

Packet Content Signatures are basically string matches with the packet contents; Chapter 4.
Packet contents, also known as payload, are the data of the network packet that is being
communicated from the source to the destination machines. Content signatures are the most
common and provide the greatest detail in detection.

FTP Site Execution is an attempt to execute programs on the FTP server during an FTP
session. Executing programs remotely that lie outside the FTP root directory is an activity
commonly used to access privileged resources. In general, a computer that allows FTP access
should not allow FTP site executions.

Packet Header (Traffic) Analysis is a method to detect suspicious network activity without
needing to look at the packet contents. Packet headers include the routing information for the
packet. There is a surprisingly large amount of detection information that may be derived by
using traffic analysis.

Broadcasts are a class of attacks that causes machines to crash. Sending a packet to a system
with the source and destination fields identical will cause the protocol stack to fail in most IP
implementations [7].

2.3.2 HIDS Signatures

Signature recognition is the most common detection mechanism in a HIDS. An administrator
of the network will define which signatures that is of interest.

HIDS signatures are rules that define a sequence of events and a set of transitions between the
events. Noteworthy activities may not necessarily be considered misuse or an intrusion
because they may be used for other reasons. There are several types of signatures available,
including single-event, multi-event and multi-host.

Ninety percent of HIDS signatures are single-event. This is because the most interesting
activities can be represented in single events. However, single event signatures should not be
considered simple just because there is only one event. There are many fields in a single
event, and the combinations of field data can be as complicated as multiple event signatures.
From a security point of view, executable files are not often written. This usually happens
during controlled software updates and other scheduled administrative activities. Attackers
who plant trojan horses and viruses that are infecting executable files are detectable with a
simple single event signature.

Multi-event signatures are sequences that include two ore more events and a set of transitions
between the events. One simple example of a multi-event signature is Three Failed Logins
which is based on password guessing. Although this attack is relatively low tech, it can still be
very effective because there are always users that make poor password choices. It is rumored
that half the passwords in the Dallas area are some derivate of “Cowboys”. This is a relevant
signature because password guessing is still common. The Three Failed Logins signature will
create many alerts. An administrator account should make this particular alert more
interesting than a normal account. One way to tune this signature is to specify “administrator”
in the signature definition so that only failed logins from an administrator will trigger.

Multi-host signatures are signatures that are an aggregation of events from multiple hosts that
indicate a noteworthy action. Multi-host signatures are useful for detecting stealth attacks.
Stealth attacks are when an attacker does only a little bit of an attack on each machine in order
to stay “under the radar” of the IDS. There are a number of challenges related to
implementing and configuring multi-host signatures. For example, consider a network where
you would have to correlate data from Solaris, HP/UX, Windows NT/2000 and Netware to

look for this type of attack. It is obviously a challenge to make these signatures work, but a
good IDS should be able to do so anyway [7].

2.4 Detection Mechanisms

IDS technologies offer both signature and statistical anomaly detection. Artificial intelligence
(Al) and metalanguage have been used in research systems but is not commercially available

[7].

2.4.1 Signature Detection Mechanisms

Although there is a rich set of signature types, the administrator must be conservative in
establishing rule sets for a network because too many signatures will result in poor
performance and lower manageability. Most commercial 1DSs are delivered with predefined
signatures. The administrator can then choose to customize some of the standard rules, or
even create new rules from scratch [7].

2.4.2 Statistical Analysis

Statistics only reflect behavior, not definitive activity. The nondeterministic nature of
statistical models makes them most useful in assisting an administrator with broad
investigations.

Statistical analysis has a long history in IDS. The first IDSs were designed to automatically
distinguish users from each other by using statistical behavior models. This was originally
known as automated anomaly detection and was intended to detect users who pretended to be
other users by logging into somebody else’s account. The early systems scratched the surface
of this capability and even showed some level of success.

Statistical analysis provides some of the most powerful features in intrusion detection, but
there is a value in these detection models only if their use is kept in perspective. Effectively
identifying users by their behavioral characteristics will probably never be possible. Statistics
can assist an operator in detecting misuse but they are not very effective as automated
detection mechanisms [7].

2.4.3 Metalanguage

Metalanguage is a special case of a rule set that typically consists of thousands of rules that
describe the behavior of a user or system. Misuse is detected through combinations of rule
triggering that indicate behavior outside normal behavior patterns. Metalanguage is
interesting because it uses a rule-based technology to perform a task that is usually reserved
for statistical methods [7].

2.4.4 Artificial Intelligence (Al)

A computer is said to have Al if a program running on it is made in such a manner that it can
be said to have similarities to the human thinking processes. The goal in applying Al to the
intrusion detection problems is to automate the correlation processes that a human brain can
perform much better than any computer.

10

We can differ between strong and weak Al:
e Strong Al
o Claim that computers can be made to think just like human beings do. More
precisely said there is a class of computer programs such that any
implementation of such a program is really thinking.
e Weak Al
o Claim that computers are important tools in the modeling and simulation
activity.
This differentiation puts expert systems and statistical models in the weak Al category. Neural
networks are the best candidates for strong Al. Neural networks were first used in IDS in the
late 1980s [7].

2.5 A Lightweight NIDS called Snort

One popular type of NIDS is a manual router and firewall log analysis and the use of a
shareware package called Snort developed by Martin Roesch [10]. Snort is a packet
sniffer/logger that can be used as a lightweight NIDS. It features rules-based logging and can
perform protocol analysis and content searching/matching. A variety of attacks can be
detected also. Snort has a real-time alerting capability, with alerts being sent to a separate
alert file [7].

As an aside, the name Snort came from the fact that the application is a sniffer and more. That
is, the application snorts also (packet logging). Also, Roesch felt that he had too many
programs called “a.out”, and that all the popular names for sniffers called TCP-something
were already taken.

Figure 2.4 gives an overview of Snort. A packet Sniffer is a device used to tap into networks.
This is similar to a telephone wiretap. The effect of this is that the entire communication
being tapped can be monitored and logged. A simple way of preventing anyone from
retrieving information out of network packets, is to use encryption; Chapter 2.3.1. The
packets can still be monitored, but the encrypted data will be useless without the proper
decryption key.

Network ——| Sniffer |Preprocessor Detection | Alerts/

> [Loggin
Backbone | —» Engine o Log Files/

Packets \\\ f f 74 Database

Figure 2.4: Snort Architecture[8]

After having packets sniffed off the network, they are passed on to the Preprocessor; see
Figure 2.5. The Preprocessor reassembles the packets. By using Plug-ins, it then determines
which protocol that has been used. Only packets identified by such a plug-in are passed on to
the Detection Engine. As an example, if you don’t want Remote Procedure Calls (RPC)
packets sent to the detection engine, then simply remove the RPC Plug-in.

11

—— | Preprocessor Detection Engine

-

HHTP Encoding Plug-in

Port Scanning Plug-in

Figure 2.5: The Preprocessor of Snort[8]

Figure 2.6 gives an overview of the Detection Engine. The packet is checked according to a
set of rules. These rules may include strings that must be compared with the packet content;
treated in Chapter 4. If the packet matches a rule, an action will be taken as indicated by the
Logging/Alert component; see Figure 2.7 [8].

—_— Detection Engine Logging/Alert

TN

Rule

If Yes, Send to
Logging/Alerting

Do the
Packets
Match?

Discard

Figure 2.6: The Detection Engine of Snort[8]

12

0]

Web Server/Frontend

[

|

I

.

E—

E—

_ > Alerts/Logging > = .

— > ["‘1 [

- = Log Files/ Web Server/
E—

Packets Database Frontend

SNMP

Traps
WinPopup
Messages

Figure 2.7: The Alerting Component in Snort[8]

String matching, as described in the previous paragraph, is one of the main bottlenecks when
running Snort in software. It would therefore be advantageous to implement the string
matching part of Snort in hardware. More specifically, reconfigurable hardware is suited for
this purpose because the strings will change over time.

A hardware implementation that scans the contents of packets (strings) has been implemented
in [11]. The hardware chosen for this is an FPGA. The implementation has been combined
with other modules such as CAM. The scanner receives 32 bits of data per clock cycle, but
can process only 8 bits of data per clock cycle. One scanner can operate at 37 MHz. Thus, it
can check an input data stream at speed 8 bits x 37 MHz = 296 Mbits/s. By running four of
these scanners in parallel, the entire input data of 32 bits can be processed each clock cycle.
This gives a throughput of 4 x 296 Mbit/s = 1.184 Gbit/s. Regular expressions have been used
in this solution. Such expressions give a capability of storing more data per byte than exact
string matching, for example by using wildcards such as “**, *?” etc. Regular expressions are
not a topic of this project. A CAM capable of doing exact string matching is presented in
Chapter 4.

A string matcher that searches through the content part (strings) of all Snort rules has been
developed in [3]; see Figure 4.1 for a typical Snort rule. These strings are then converted into
a regular expression that matches all the strings. An FPGA has been used to implement this
string matcher, and it exceeds the performance of a system based on software by 600x for
large patterns. For a small pattern of 47 bytes the hardware throughput was 862 KByte/s, (6.8
Mbit/s) while the software throughput was 884 KByte/s. For a large pattern of 4971 bytes the
hardware throughput was 784 KByte/s, while the software throughput was 1.72 KByte/s. As

13

can be seen from these two examples are that the larger pattern we have, the more
advantageous it is to implement a hardware string matcher.

14

3 RECONFIGURABLE HARDWARE

Reconfigurable hardware is still a young field of research. Although Gerald Estrin of the
University of California at Los Angeles proposed reconfigurable hardware in the late 1960s,
the first demonstrations did not occur until the middle of the 1980s [12].

3.1 Brief History

To understand how the reconfigurable circuits that are in use today works, we must take a
short tour through history. We will start in the early 1970s by taking a look at Programmable
Logic Arrays (PLA) before continuing with Programmable Array Logic (PAL) and
Programmable Logic Devices (PLD). These devices are commonly called Simple
Programmable Logic Devices (SPLDs). We then end up with the two most common
categories of reconfigurable devices that are in use today; the Complex Programmable Logic
Device (CPLD) and the Field Programmable Gate Arrays (FPGA). These devices are
collectively called Field Programmable Logic Devices (FPLDs) [13].

It is natural to ask how hardware devices can be electronically programmed to perform any
possible logic function. These devices evolved from the PLA devices of the early 1970s. The
basic PLA structure is shown in Figure 3.1. It consists of a layer of AND gates succeeded by a
layer of OR gates, interconnected through programmable switch arrays. In the PLA, every
input and its logical inversion is passed into an AND array on the horizontal wires. The
vertical wires in the AND array are inputs to a row of AND gates. The AND gates receive
input signals by tying the horizontal and vertical wires together as illustrated by the black
dots. Thus, in Figure 3.1, the leftmost AND gate receives the logical inverse of the C signal
and ANDs it with the A signal.

The OR array has a function similar to the AND array. The vertical wires are outputs from the
AND gates into the OR array. There they can be connected to the horizontal wires, which are
inputs to a column of OR gates. By connecting the outputs of the AND gates to the inputs of
the OR gates, a sum of products can be created at each output of the PLA.

15

AND Array

OR Array

AC ABD CD AB
Figure 3.1: PLA [13]

The flexibility provided by both a programmable AND and OR array often went unused, so
engineers came up with the simpler PAL structure; Figure 3.2. The programmable OR array
were replaced with a set of fixed connections from AND gates into the OR gates. The PAL
also outputs feedback into the AND array. The feedback terms are used to build multilevel
logic functions. Thus, you can program the switches to form any product term you want. In
Figure 3.2 the output from each OR gate is fixed to be the sum of two product terms.

v

AND Array

m

|
—
o]

VYRV

SR

@ 1 1
D D :
Flip-Flops
Q PR

Multiplexers

Feedback Terms

Figure 3.2: PAL [13] Figure 3.3: PLD [13]

PALs and PLAs are good for combinational logic, but they cannot be used for sequential logic
without adding external flip-flops. So flip-flops were added to the PAL structure; Figure 3.3.
This circuit is called a PLD. Multiplexers were added to each output in order to select either
the flip-flop output or the combinational output as the actual output. The AND gates, OR

16

gates, flip-flops and multiplexers that drive each output are collectively known as a macrocell
(Macrocells are used in CPLDs which will be presented below). Modern PLDs have a variety
of programmable circuit structures with many options that can be enabled to increase the
usefulness of these devices.

The PLAs, PALs and PLDs had to be placed on a Printed Circuit Board (PCB) and then wired
to each other and other components. The PLDs could be replaced if small errors were found
on the PCB. However, large errors could only be corrected by manually changing the wiring
pattern on the PCB. Another disadvantage with these devices is that they can be programmed
only once. By combining several PLDs into a single device, it was possible to create CPLDs.
An alternative architecture was used to construct the FPGA. This solved the problems related
to PCBs.

1/0 Pins
36) 18
; Configurable I P
' Function Block ‘
= 18
N M
36 . 18
= . Configurable
2 " 7] Function Block ‘ <
= 18
173}
G
36) 18
o y Configurable :
Z 7 Function Block] <
O 18
Q
o
© 36 . 18
= i Configurable ,
.13 Function Block [<
36
2 Configurable " P
T "] Function Block I ’
36 18
; Configurable .
'13 Function Block I <
36 Global Global |
SetfReset Clock
[V A Extra Product Terms
from Other Macrocells XKC9500 Macrocell
™\ (1 of 18 within each CFB)
|
My
== N
Product Term Set L/J
) :
D .|
g
- To FastCONNECT
D— Product o Sk Viatrn
Term Q
Allocator
> Product Term Clock D—‘» R
D_ Product Term Reset gD‘Q
Product Term OE D To IO Pin

Figure 3.4: XC95108 CPLD [13]

The Xilinx XC9500 series of CPLDs is an example of such a CPLD; Figure 3.4. For example
the XC95108 contains six Configurable Function Blocks (CFBs); upper half of Figure 3.4.
Each of these CFBs is equivalent to an 18-macrocell PLD with 36 inputs and 18 outputs. The
bottom half of Figure 3.4 shows one of these 18 macrocells. Each macrocell is connected to

17

an 1/0 pin on the chip. Complex multilevel logic functions can be built by programming the
individual logic functions of each macrocell in each CFB and connecting them through a
switch matrix. The result is a design where each pin on a CPLD is driven by a macrocell that
implements a wide logic function of a combination of many inputs. The CPLDs use
nonvolatile FLASH-based storage cells so the device retains its programming even if the
power is turned off.

The FPGAs employ Static RAM (SRAM) storage cells so they need to be reprogrammed each
time power is interrupted. The basic building block for the FPGA is the LookUp Table (LUT);
Figure 3.5. A typical LUT has four inputs and one output. It has a memory containing 16 bits.
Applying a binary combination to the inputs (such as “0110”") will match the address of a
particular memory bit and make it output its value. Any four-input logic function can be built
by programming the LUT memory with the appropriate bits. For example, a four-input AND
gate is made by loading the entire memory with ‘0’s except for a ‘1’ that is placed in the cell
that is activated when all the inputs are *1’, as is done in Figure 3.5.

Inputs

e PR

EEEEEEEECEEE0Es

0001
0010,
0011
0100
0101
‘074D
0111
1000
1001
1010 |
1011
| 1100 |
1101 ||
1110
1111]

"-‘F_-'I'l"r'.:lr'g," Bits

— 1 Output

Figure 3.5: LUT [13]

18

In FPGASs such as the Xilinx XC4000 series, three LUTs are combined with two flip-flops and
some additional steering circuitry to form a Configurable Logic Block (CLB); Figure 3.6.
Then the CLBs are arranged in an array with Programmable Switch Matrices (PSMs)
between the CLBs; Figure 3.7. The PSMs are used to route outputs from neighboring CLBs to
the inputs of a CLB. The FPGA 1/O pins can be attached to the PSMs and CLBs. Most
FPGAs have a lot more CLBs than 1/O pins. Thus, each CLB cannot have a direct connection
to the outside world, as is the case with macrocells in a CPLD.

v A=A

C1.C4

|
go
ks

112 Pin 140 Pir
i S
: —- :
H FEM PSM :
H i

1
! cLe cL8 CLB i
; :
i = i

1'C Pin ! PSR PS 113 Pin
] & ¥
; i
i CLE CLB CLB :
' :
10 Pin P8 8 st PS> voFin
; :
i :
i CLB CLA CcLe 1
H 1
[H
i :
[. =
: =l W i
: T i
' i
W2 Fin IO Fin

Figure 3.7: A Generic FPGA Architecture [13]

19

All the wiring in FPLDs is internal to the device, so there is no way an engineer can
physically change any connections. Instead, the connections are programmed electrically. In
SPLDs the switch arrays are manufactured with fuses at every cross points such that every
input is connected to each logic gate. A “burner” is used to program an SPLD. High voltages
are set on selected vertical and horizontal wires. The high voltage burns out the fuse at the
cross point between the two wires. This operation is performed until all the unwanted
connections are burned out. At the end of the process, only the connections needed to build
the desired logic functions are left.

The disadvantage with fuses is that once they are blown, they stay blown. When a bug is
found, the programmable device has to be discarded and a new one must be programmed. It is
more convenient if the connections can be erased and reprogrammed. This is a major
advantage of the CPLDs and FPGAs. They contain reprogrammable switches where the fuses
would normally be. Each switch is controlled by a storage element that records whether the
attached switch is opened or closed. Changing the values in these storage elements changes
the state of the switches and alters the functions of the programmable device. These switches
can be repeatedly programmed to implement new designs, or repair faulty designs. This is
eliminating the need to buy a new device for each design modification. [13]

20

A brief overview of (re)programmable devices is given in Table 3.1 [14].

Vendor
PAL Programmable Array Logic Vantis
GAL Generic Array Logic Lattice
PLA Programmable Logic Array
SPLD . .
PLD Programmable Logic Device
The smallest and cheapest way of programmable logic.
Programming is done by fuses or non-volatile memory like EPROM,
EEPROM or FLASH.
EPLD Erasable PLD
PEEL
EEPLD Electrically EPLD
CPLD : .
MAX Multiple Array matriX Altera
FPLD A typical CPLD has 2 to 64 times as much logic as an SPLD.
Programming is done by non-volatile memory like EPROM, EEPROM or
FLASH.
LCA Logic Cell Array Xilinx
pASIC programmable ASIC
FLEX, APEX Altera
ACT Actel
HE ORCA Lucent
Virtex Xilinx
pASIC QuickLogic
Typically offers more logic than a CPLD.
Programming is done by Static RAM (SRAM) or antifuses.
CSoC Configurable System-on Chip

Table 3.1: Summary of (Re)Programmable Devices

21

3.2 The Choice of a Reconfigurable Hardware Platform

As stated in Chapter 1, reconfigurable hardware is well suited for this project. In Chapter 3.1,
we could see that the most common types of reconfigurable hardware are CPLDs and FPGAs.
The most outstanding advantage of using an FPLD is its ability for parallel processing. The
advantage of this ability in relation with a CAM will become obvious in Chapter 4.

In practice we can say that an FPGA can be reconfigured an infinite number of times and that
it is capable of being programmed with far more complex designs than a CPLD. A CPLD can
typically be configured a limited number of times. For a large design an FPGA has far better
resources for parallel processing than a CPLD. A CPLD on the other hand has far better
resources than an FPGA when implementing large boolean expressions, but this is not needed
for this project. An FPGA was therefore chosen for this project.

The FPGA for this project, and the board it is attached to, was chosen by the following
criteria:
e Debugging possibilities must be available so that prototypes can be developed fast. A
Development Board was chosen for this purpose; see Figure 5.1.
e Anintegrated CPU should be present for future use. This CPU must be able of running
Snort software; Chapter 1.
e The possibility of fast communication with other devices must be present. Xilinx
offers FPGA with Rocket 1/0s capable of baud rates from 600 Mbit/s to 3.125 Ghit/s.
e It must be able to process data in as high a speed as possible. That is, the best possible
speed grade must be selected.
¢ It had to fit with the economical budget that was given to the project.
A Xilinx Virtex-11 Pro FPGA that met all of the above criteria’s was chosen. The FPGA
chosen has one PowerPC 405 CPU, four Rocket 1/0s capable of baud rates up to 2.5 Gbit/s
each and a speed grade of -7. The use of the CPU and the Rocket 1/Os are out of scope in this
project. The speed grade will be explained in Chapter 6.

3.3 Some Details of Xilinx Virtex-1l Pro FPGASs

Figure 3.8 gives a general overview of a Virtex-11 Pro FPGA. As can be seen from the figure,
the CLBs take up most of the area in the FPGA. It further indicates the placement of the
Processors (PowerPC 405) and the Rocket 1/Os.

Figure 3.9 illustrates one CLB in a Virtex-1l Pro FPGA. The LUTs, MUXCYs and the carry
chain will be used in Chapter 4 to make wide AND gates. Note that the carry chain goes
upwards in columns. Each CLB in a Virtex-11 Pro is subdivided into four slices.

Figure 3.10 shows a block diagram of the available logic in one slice. The possible
connections are not shown here. There are two function generators, F and G. Each function
generator is capable of generating any 4-input Boolean function. A function generator can be
configured as RAM, a ShiftRegister or a LUT.

The top/bottom half of a slice is called a Logic Cell (LC). Figure 3.11 shows the details of the

top half of a slice. The resources used in one LC when making a wide AND gate as in Chapter
4, is indicated by the grey area.

22

Figure 3.12 shows the basic contents of an 1/0 Block (IOB). As can be seen, each 10B can be
configured as either input or output. The need of the Pullup Resistor is indicated in Chapter
5.1.3 and Chapter 5.1.4.

RocketlO™
DCM Multi-Gigabit Transceiver
/

P mm—

\

\
\
Processor Block

CLB|| A

Multipliers and
Block SelectRAM
\

CLB

CLB
| Con[igurable |

ogic

b swms

SelectlO™-Ultra

Figure 3.8: An Overview of a Virtex-11 Pro FPGA [17]

23

couTt couTt

A to SO of the next CLB to CIN of S2 of the next CLB
I I
: I
! r/a'jl\ MUXCY :
: LUT yu—) FF [
> |
: (First Carry Chain) B |
| SLICES3 |
| r/o—r—,\ MUXCY :
I y FF I
LUT)
| [I |
| b | |
: I
I CIN :
: I
| couT :
I
| r/aal\ MUXCY :
: LuT) FF :
>
: b I
| sLicEs2 |
| 0 1\ MUXCY :
I y FF I
MUXCY LuT [*
I o 1 —)
I \ FF = :
| LUT —)) D [|
>
: I
H
I SLICE S1 :
| O |\ MUXCY I
I
\ FF |
I LuUT [*)
!) O g :
: D I
I
I CIN I
: I
I
: cout (Second Carry Chain) |
I
MUXCY
i W"_L'\ |
y FF I
I LUT 1
| »—) K :
: P I
I
: WCTEI\ MUXCY SLICE S0 !
\ FF |
I LUT 1
| »—) L :
: e I
I
: ! CIN A CIN CLB :
I I
A A

Figure 3.9: Fast Carry Logic Path ina CLB [17]

24

AN
RAM16 | O D ORCY
AN
AN
AN
N N MUXFx
SRL16"
N N cY Register/
LgT\\ . Latch
RAM16 [O
N\
« MUXF5
AN AN
SRL16"
N\ \\ Register/
\\ LET N Latch
D Arithmetic Logic
Figure 3.10: Slice [17]
SHIFTIN couT
SOPIN > 'j ORCY
DY [— SOPOUT
0 _)_/
E gﬁ%l-;ort ’W YBMUX VB
ift-Reg
G4 > Ad 1 McL)J XCYl
G3 = A3 EELA,TV'
G2 = A2
ROM
Gl > Al oRo D ~
WG4 > e GYMUX Yo
WG3 = WG3 .,T__)j > =
WG2 > WG2 T
MC15 b < DY--!
WG1 > WG1 co XORG OFF
W WS DI CJLATCH
ALTDIG .
) o> DYMUX D Q—Tt—=o0
»—_DMULTAND g?OD CE—CE v
|8y CYOG CLK—{ CK
0— SR REV
BY W f N '
) U
A,
SLICEWE[2:0] WSG SHIFTOUT SR
WE[2:0] [—> DIG
WE

| C MUXCY,
WSF 0 1

I

[

Shared between
X & y Registers

CE

CLK

SR

B

CIN

Figure 3.11: Logic Cell [17]

25

Vcco

Pullup Resistor
Weak
Keeper
Program = 40K —
Current 120K
>—E—I—& PAD
Vcco
40K — mmmmmmmccccccccea-]
T € Pulldown Resistor
Program) Vecaux =25V
| Delay VCCINT = 1.5V
IBUF

Figure 3.12: Input/Output Block [17]

26

4 MAKING A STRING MATCHER

Figure 4.1 shows a typical Snort rule (signature). The emphasized text illustrates a string that
will be compared to the payload of an incoming packet over the network. These strings may
have any length. Snort 2.0 has well over 1400 rules which may contain such strings. String
matching therefore becomes a major bottleneck of the performance; Chapter 2.5. To remove
this bottleneck, a hardware solution is proposed in this chapter by using an FPGA; Chapter
3.2.

alert tcp $EXTERNAL_NET any -> $HOME_NET 12345:12346 (msg:"'BACKDOOR netbus
getinfo'; flow:to_server,established; content:"Getlnfo]Od|";
reference:arachnids,403; classtype:misc-activity; sid:110; rev:3;)

Figure 4.1: A typical Snort rule (signature)

The top of Figure 4.3 illustrates Snort when running string matching on a PC. The middle
figure shows how a string matcher in hardware can be used to speed up the performance of
Snort. The illustration at the bottom shows how a string matcher has been implemented and
tested in this project.

4.1 String Matching

Figure 4.2 illustrates the basic idea of a string matcher. A 4-input AND-gate, with optional
inverters on the inputs, is capable of matching any 4-bit string. For a string of n bit, we would
need an n-input AND-gate.

Match

Data Shift
Register

Data

Figure 4.2: The Basic Idea of a String Matcher by Using an AND gate

27

PC
Snort
Network
StringMatching
PC
StringMatcher
Network Snort in Hardware
StringMatcher
PC i
in Hardware

Figure 4.3: String Matching Targeted for IDS

With signature based IDS, it is an advantage of having a fast string matcher. By using a
Content Addressable Memory (CAM), we can check the content part of one signature against
numerous strings in one clock cycle. Figure 4.4 shows a comparison of RAM and CAM in
read mode. They both store 1024 words of width 8. Similar to a RAM, a CAM stores words in
an array. It should be noted that a CAM also has an address bus to be able to access every
word in write mode. Also, the CAM shown here has a possibility of making only 256 (2°)
unique words, while there are 1024 (2*°) words available. This means that there will be some
multiple matches no matter what data this CAM stores. The handling of multiple matches will
not be a topic in this project.

RAM

: D 7:
Address[9:0] | g . 1054 ouTl7:0]

CAM

Read Mode Address[9:0]

Din[7:0][8 x 1024 |——
e

Match
| Vialtll

Read Mode
Figure 4.4: CAM/RAM Read Mode [15]

A CAM is used to store data, much the same as a RAM. The write mode of CAM and RAM is
similar to some degree, but the read mode differs significantly. With RAM we input an

28

address, and get data out. With CAM we input data, and if this data is stored in the CAM, we
get the address of that data out. There is an address at the output even if there is no match, so
with CAM we need a Match bit to indicate if the data at the input exists in the CAM or not.

A traditional way of describing the size of a CAM is given by “width * words”. The width
tells the size in bits of one storage location in the CAM, while words give the number of
storage locations. The advantage with CAM is that all of its words can be looked up in
parallel.

Figure 4.5 shows how a CAM has been applied for string matching in this project. The data to
be matched is sent to the CAM (Byte Stream). In parallel, it is compared to all strings (i.e.
words) stored in the CAM. If a match is found, it is indicated by the Match bit. The Match
Address reports the “address” of the string that matched in the CAM. Exact string matching is
performed and thus, only one (or none) string will give a match. Note that Snort has not been
used, although the string matcher is intended for use with Snort.

Byte Stream
Match Address FPC_EA:
pc 1€ String Matcher
Match (CAM)
|«

Figure 4.5: A CAM Applied in a String Matching System

4.2 Designing a CAM for String Matching with Snort

Virtex (-E / 11 / 11 Pro) FPGAs are suited for making logic that is equivalent to wide AND-
gates. The components chosen for this purpose are LUTs configured as shift registers
(SRL16E) and multiplexers (MUXCY); see Figure 3.11.

4.2.1 Requirements for a CAM used as a Snort String Matcher

The following properties are desired for the string matching:

1. The length of a string should be independent of the others. That is, the CAM should be
able to compare strings of different lengths at the same time. As a string has a smallest
element of one character (one byte), the smallest element in the CAM should be no
more than one byte.

2. The number of words should not be restricted; for example to 2". It should be possible
to specify the number of strings by any integer.

3. The comparison between an incoming packet and the strings must be fast, preferably
around 1Gbit/s.

4. The time spent for changing the content of the CAM is insignificant, because Snort
rules are rarely changed. Still, the possibility of writing to the CAM is kept in order to
make as flexible a CAM as possible. As seen in item 6 below, the need to make a
write is obvious.

5. The time spent for making the VHDL code of a CAM should be small. Also, it should
not be necessary to go into the details whenever a new CAM is acquired.

29

6. Future work: It should be possible to change the number and length of words in CAM
without having to reconfigure the FPGA. This will add further flexibility to the CAM
and the previous item would then be eliminated.

Making a CAM where the width of each word is equal is easily achieved in VHDL. The lack
of programming capabilities in VHDL makes it a greater challenge of designing a CAM
where each word may have any given width. Even more complexity is added if the number of
words could be any integer. Many details in the VHDL code describing such a CAM will
have to be changed each time a new CAM is acquired. The solution for this is provided by the
following scheme:

Perl > (Generate VHDL source code)
VHDL - (Synthesis tools takes care of the remaining steps)
(...)~>
FPGA Bitstream

All the details that need to be changed for each possible configuration of a CAM are handled
by a programming language. Perl has been chosen for this project, but any other programming
language would do just as well. The content of the VHDL CAM files that do not need to be
changed are simply stored as text in the Perl script and will be written to files at the
appropriate locations. The parts of the VHDL CAM files that need changes are treated as
variables in Perl. For a given CAM these variables are calculated and then converted to text
before written to the corresponding VHDL file. In between the variables, the content that does
not need changes is written directly to file. The Perl script made in this project is capable of
generating VHDL files describing any CAM based on the SRL16E and MUXCY in less than
one second. The number of words may be given as an integer input to the script. The length of
each word may be read from file. The file used for this project is described below.

To obtain a realistic dataset for testing the CAM (by simulation and by hardware), the
following choices was made:

1. Make a Perl script to scan all Snort rules for strings that are to be matched.

2. Do not store a string if there are more than one “content” part in the rule; see Figure

4.1 for an example of a Snort rule with one content part..

3. Do not store a string that could generate a multiple match.

4. Store strings that are at lest 4 bytes and no more than 32 bytes.

5. Write these strings to file.
There were 1083 strings that matched the above criteria’s. As can be seen from Table 6.1,
only 256 of these were used. A discussion for this is left to chapter 6.

A CAM with variable word-width it is better described in bytes, rather than width * words.
The amount of logic in a given FPGA is the only limitation for the CAM as specified to the
Perl script. It is therefore up to the designer to define the organization of the CAM for the
given application/FPGA, when designing a CAM this way.

4.2.2 SRLI16E

Because the SRL16E is the basic building block of this design, it is clearly an advantage to
know in detail how it works. Figure 4.6 shows the block level symbol of this component. As a
trivial matter, we know that there are 16 flip-flops connected in serial to make a shift register.
The questions that remain to be answered are how the data is shifted in, how the Clock Enable

30

(CE) and address (A3-A0) affect the shifts, and how to control the output Q. However,
information about the basic construction of this component has not been available.

—t D
—{ CE Qp—
D Data In
—>CLK CE Clock Enable
. CLK Clock
A0-A3 Address
AL Q Data Out
— A2
— A3

Figure 4.6: SRL16E Block Level Symbol

Experiments by simulation are a good alternative to get detailed knowledge about a
component if little or no documentation about it is available. Appendix B shows details of a
simulation of an SRL16E. Xilinx is providing libraries to make simulation of their
components possible. Based on this simulation, we now have good reasons to believe that an
SRL16E might look like the one shown in Figure 4.7. As can be seen from this figure, the
only purpose of the address is control the output. Also, the data-bit is always shifted into the
least significant address (the flip-flop at the top). A shift occurs at the rising edge of the clock
(CLK), and all bits are then shifted one address higher (downwards in the figure). The bit in
the most significant address (at the bottom) is overwritten, and lost. A shift can only occur
when the clock is enabled; that is, when CE is high. With this knowledge it is easier to make a
correct design, and less time will be spent on debugging it.

31

SRL16E

i__L——Ii_'_ |~D Q
= =l
=1
-l s
=l
ash-- o
= M
A0 i_ﬁ—r U/l
ERII
i
it

Figure 4.7: Looking Inside of an SRL16E

4.2.3 Configuring SRL16Es as CAM-Words

By configuring an SRL16E as shown in Figure 4.8 and disabling the shift, we get an
equivalent logic to that shown in Figure 4.2. By connecting a data shift register to the address
bus of the SRL16E, we get a 4-bit CAM [16]. Note that only one ‘1’ has been written to the
SRL16E. For this reason, an SRL16E-based CAM consumes a large area in an FPGA. It is
typical that CAMs need more logic per bit than RAM.

32

SRL16E

0000
0001
0010
CE — 0011
0100
0101
0110
0111
A3 1000
1001
1010
1011
1100
Al 1101
1110
1111

A0 —-‘ ﬁ

Figure 4.8: SRL16E Configured as an AND-gate

CLK—D

A2

[eNelll[cNoNeNoNoNoNoNoNoNoNoNoNe]

It is possible to connect SRL16Es in series through a carry-chain as shown in Figure 4.9 [17].
Each slice is capable of representing a CAM of 1 byte (two SRL16ES). The number of slices
required for a word is therefore equal to the number of bytes in the word. Note that the words
must be stored upwards in columns due to the direction of the carry-chain.

By connecting the output of the SRL16E to the Select(S) input of a MUXCY, we can make a
wide AND gate suited for string matching. If S receives a ‘0’, input O (which is grounded) of
the MUXCY will be selected. Otherwise, the Carryln (CIN) signal is selected. This signal is
then passed on to the next MUXCY. A “Match Enable” signal is connected to the first
MUXCY. If only one of the MUXCYs receive a ‘0’ on its CIN, the match result will be zero.
As seen on the figure, we can now make words (AND gates) of width n bytes.

Match
Slice T
S Select
N = CIN Carryin
couTt Carry out
Slice ¢
1 == SRL16E

Match Enable

Figure 4.9: Serial Connection of SRL16Es to Make One CAM-Word

33

424 CAM Read Mode

Figure 4.10 illustrates a (5,9,4,6) byte CAM in read mode. Each location in the shift register is
connected to all matching units in the corresponding row as indicated by horizontal lines in
the figure. The CAM has a latency of two clock cycles from “Match enable” goes high, until
the output registers of the encoder are updated. By giving new data to the shift register each
clock cycle, we will get a new valid output for each clock cycle.

[] Match register

[] Match Address register

CAM 1
| Encoder |
@ <«—Registers for syncronization
4
|4 - -
|4 - -
g — 1
(%2l
s T | [soe
eHH |5 M —
£ — |:| Slice, 2x(SRL16E + MUXCY)
- -
©
M- —
= T
L Match Enable
Data

Figure 4.10: CAM Read Mode

425 CAM Write Mode

During a write (shifting data into SRL16ESs) there should be made no shifts in the data shift
register, and the Match Enable (as seen in Figure 4.9) should be low. This will ensure that the
outputs of all words are kept low.

To make an “AND gate”, a ‘1’ should be written to the address of the SRL16E that contains
the bit pattern to match. Because there are 16 locations to address in the SRL16E, 16 bits
must be shifted in during one write. Only one address will have a ‘1’ written to it, on the last
shift of the write operation; the other addresses will have “0’s. That is, if we want to make an
AND gate to match the pattern “1101”, a '1" should be written to address “1101” of the
SRL16E, as seen in Figure 4.8. All other locations should store a ‘0’. Since a write to an
SRL16E is always made to address “0000”, we need two extra components to control a write;
a counter and a comparator; see Figure 4.11. The counter will count the 16 clock cycles for
one write. The comparator will determine whether to write a ‘0’ or a ‘1’ during a write. A ‘1’
will be written only to the address that equals the data at the Data Shift Register.

34

Comparator b SRL16E

Data Shift
Register

T— 16 clock cycles Write Enable to SRL16E

1 clock cycle Write Enable from user
Figure 4.11: Detailed Look of a CAM in Write Mode

The counter in Figure 4.11 is illustrated in detail in Figure 4.12. It generates a 16 clock cycles
Write Enable signal for the SRL16E, and also gives the counter value, count(3:0), to each
comparator; see Figure 4.13. As the 1 clock cycle Write Enable goes high to start the
counting, “1111” (D) is loaded into the counter. The CE goes high and the counter starts. As
long as there is at least one ‘1’ in the counter output (Q), the output “Write Enable”-signal
will be high. When Q is at “0000”, CE will go low and the counter will stop.

gomnnae 1-bit register
vee 4-bit Down Counter v bl
) Write Enable
h D Q 1 (16 clock cycles)
Write Enable | Load
(1 clock cycle) » count(3:0)
L 3 CE
ck —) C

Figure 4.12: Counter

Figure 4.13 shows in details how a comparator is constructed. The input is constant during the
write. The address being written to is equal to the counter value. This value can therefore be
compared to the input from the shift register. If the input equals the counter value, a ‘1’ will
be written. In all other cases a ‘0’ will be written. The XNOR (identity) function is suited for
this comparison. The “Compare result”-bit is shifted into the SRL16E.

couns)]I
DL} c
. — ompare result

Figure 4.13: 4-Bit Comparator

35

Figure 4.14 gives an overview of a (2,3,1,3,1) byte CAM in write mode. Each comparator is
connected to all matching units (SRL16ES) in the corresponding row. Only one word can be
written to at a time. This word is chosen by the decoder. Note that the decoder passes on the
Write Enable signal — output by the Counter, to the chosen word.

Word Select—
CAM

Decoder

S

[o .
R%) || 4 bits
(@)

() *— |

oc Ja SRL16E
& -

< o

v O Comparator
©

- — S S

©

() —1 | [| [|

_@ Write Enable

——Write Enable
Data

Figure 4.14: CAM Write Mode Overview

36

4.3 Test of the Design by Simulation

Simulation is entirely done by software; ModelSim 5.6f. For this project, VHDL-testbenches
have been chosen for simulation. A testbench holds all properties of the design to be tested. It
is possible to give stimuli to the design. Stimuli are plain text in the testbench, and acts as
input to the design. By reading the outputs, we may predict how the design will behave in
hardware. The modules in any design (counter, decoder etc. as in this design) could be
simulated individually, thereby increasing the level of confidence to one specific component.

Figure 4.15 shows a plot where an 8-word (134 byte) CAM has been simulated. Only the last
part of the simulation is shown. The upper five signals are stimuli from the testbench. The
outputs (the two signals at the bottom) are then triggered. The stimuli in this simulation have
been made by the following criteria:

e Write to all words in CAM (one at a time). Use the dataset that was created from
Snort-rules; Chapter 4.2.1.

e Set Match Enable high. This will enable read mode.

e For each clock cycle, change the input data. Use the same data that was used during
write, except the 2™ last one. It is then expected that the Match Address Register
should count from lowest address to highest address (except from the second last
read).

e For the 2" last read, use data that is not written to CAM. The Match Register should
then go low. Observe that it goes high the next clock cycle. This is done to verify that
the Match Register is updated every clock cycle.

Similar simulations have been made for various CAMs. Some carefully chosen numbers of
words in CAMs that have been simulated are {7, 8, 9, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127,
128}. Numerous bugs of the CAM-design were found by observing the outputs generated of
(various) stimuli. For this reason, it should be obvious that simulation is highly important
when making any design targeted for hardware.

Almost all bugs can be detected by simulation. Detecting bugs by hardware is more
complicated. How many bugs we must search for in hardware depend of how well the design
was simulated (how cleverly the stimuli were chosen). Still, in large designs it is impossible
to simulate all possible combinations of inputs, and it should therefore be expected that some
of the bugs must be searched for in hardware.

Professional designers are known to use as much as 70% of the time spent on a project for
testing their design [18]. To stay at a professionally competitive level, various ways of testing
a design must be known. To be able to combine methods gives further advantage over
competitors.

37

31942 A1ana sabueyd ejep ay) papiroid
81242 X20]9 BUO UBY) ‘ydlew 1Sy syl
1o} papaau aJe sa[2A2 X209 oM

pInoys ¥l se ‘sjrey
yoleuw 1se| puodas ayL

POILISA S1LUM 1SET

peal o} pajqeus si NVD

219|dwo9 S)IM 1seT

‘01 uanum Buiaq

mou si (,TTT.) L SSaIppy
"91lUM 1SE| JO Ue1S

su @o: Su 0SET : wc 00€T Su 0S¢T Su 00ZT su omdmﬁ

i [[i | m, (. | | m [m [i [| | [i [m
—
o) M& s v e e 1 ow
—
LT

\3X3 zdidnd\=sweudyf gw%\u_i — ,mxm.mo_n_:o/umgmcm_cm

I9)SISaI YOYeIN

19)SI821 SSAIPPY UdIeN]
alqeuy yoreN

JAVD 0} LM JIeig
J09[9G PIOM

ejeq

201D

Outputs

Inputs (stimuli)

Figure 4.15: Simulation of a 134 Byte (8-Word) CAM Design

38

4.4 Functional Verification of the CAM Design in FPGA

Figure 4.16 illustrates how an 1822 bytes (128 words) CAM was verified in hardware. The
User Interface communicates with the FPGA through the Universal Asynchronous Receiver-
Transmitter (UART). The ports of the UART are commonly called Serial Ports, but they may
also be called RS232 ports. The Development Board does not have a UART. Thus, it was
necessary to make modules in the FPGA that could communicate with the UART. RS232
modules (RS232RX and RS232TX) were designed to handle this communication. One
RS232RX module receives one byte at a time from the User Interface. Sending data the other
way, the User Interface receives data, one byte at a time, from the RS232TX module. The
MAX3223C and MAX3221C are driving the signals between the UART and the 1/Os of the
FPGA. Details of how to make the RS232 modules are left to Chapter 5.

The FPGA is entirely controlled by the User Interface. All input operations to the CAM are
communicated through the Instruction Register Control. As can be seen, there are seven
instructions needed to control the CAM. The Instruction Register Control receives one byte
for every instruction. It is therefore possible to expand the number of instructions to 2°
without introducing a shift register.

The instructions in the Instructions Register are the following:

Match Enable on Enable read mode
off Disable read mode
Write Enable Write enable signal

CAM Address Shift ~ on Shift (write) enable of Word Select Register
off Shift (write) disable of Word Select Register

Data Shift on Shift (write) enable of Data Shift Register
off Shift (write) disable of Data Shift Register

The Word Select Register is set to exactly the number of bits needed; see Figure 4.14. When
the number of address bits to the CAM is less or equal to 8, only one byte has to be uploaded
in order to select a word in CAM.

The Data Shift Register is configured to have the exact length of the longest string in the
CAM. Data is being shifted into the least significant bits, one byte at a time, and then shifted
upwards as a new byte is received; see Figure 4.10 and Figure 4.14.

The outputs of the CAM (Match and Match Address) go into a Match Detection Unit; see

Figure 4.10. If there is a match, it will be indicated by the Match bit. The Match Address will
be sent to the User Interface as shown.

39

Monitor

1

Keyboard

>

PC
User Interface €—» HardDisc
UART
COM2 COM1
TXD RXD TXD RXD
Instruction Data Data
¢ A * A
MAX3223C | MAX3221C
FPGA
A 4 \ 4
RS232RX RS232TX RS232RX
8
ig 2 x 8bit
Match
Instruction Detection
Register Control Unit
Instructions Register T 7
_) Match Enable N £
(on/off) g 8
= 3
<
S
> Write Enable > ke
) CAM Address Word Select CAM
Shift (on/off)) Register 7
1822 Bytes
Data Shift o (128 Words)
——> (on/off) »| Data Shift Register o

Development Board

Figure 4.16: Verification of CAM in Hardware

40

Description of the User Interface:
e First, the CAM-data are read into an array from file. The data are taken from the
dataset described in Chapter 4.2.1.
e Write procedure
0 Select one address in CAM to write to. The address in CAM corresponds to the
index in the array held by the User Interface

Turn CAM Address Shift on

Write address to Word Select Register. Eight bits are sent at a time.
Thus, for CAMs smaller or equal to 256 words, only one write is
needed

Turn CAM Address Shift off

Turn Data Shift on

Upload word to Data Shift Register, one byte at a time

Fill data shift register with zeroes so that the word is positioned at the
most significant bits in the shift register; see Figure 4.14

Turn Data Shift off

Give a Write Enable signal

e Enabling Read Mode. Matches in CAM will then be displayed on the monitor.
0 Turn Data Shift on
o Fill Data Shift Register with data
o Turn Match Enable on when Data Shift Register is filled up
o Continue uploading data continuously to the Data Shift Register

Figure 4.17 gives an illustration of the used resources in the FPGA when configured with the
design as shown in Figure 4.16. 93% of the resources are used; see Table 6.1, row 3. In both
images, on the right-half, the rectangle represents the IBM PowerPC 405 RISC CPU
(PPC405). Xilinx Floorplanner (right) illustrates the various widths of the words. One colored
line illustrates one word. Xilinx FPGA Editor (left) illustrates the resources that are used.
Future work includes running Snort software on the PPC405.

Figure 4.17: An XC2VP7 Configured With a CAM of 1822 Bytes (128 Words)

41

42

5 MAKING AN RS232 CONNECTION

However simple it may seem to make an RS232 connection as the one shown in Figure 4.16,
there are a lot of practical challenges to overcome in order to make it work properly. In this
chapter the hardware and software solutions for this purpose are described. Experiences made
along the way are included in such a manner that the reader should not need to spend much
time to understand the solutions presented here.

51 Hardware Solutions

The hardware chosen for this project is the Development Board shown in Figure 5.1, and the
P160 Communications Module shown Figure 5.2. This Module is a plug-in board that goes
into the P160 Expansion Slots of the Development Board. This hardware is well suited for
prototyping advanced designs in micro electronics. In the following, the on-board debugging
possibilities on the Development Board will be introduced. The purpose of using these
debugging options is to make reliable RS232 modules (RS232RX and RS232TX) in order to
communicate with a PC through the two RS232 ports available. One RS232 port is available
on the Development Board; the other is available on the P160 Communications Module.

The Parallel 1V Cable Port is used to program the FPGA directly. It is also used to program
the ISP PROMs that will program the FPGA automatically when the power is turned on. Also,
when activating the Program Button, the FPGA is programmed with the configuration stored
in the ISP PROMs. The Program Status LED will glow when the programming of the FPGA
IS done. The remaining components that have been used are described in details in the
following subchapters.

Detailed simulation of a design inside an FPGA is possible. Simulation of components that
are external to the FPGA cannot be simulated well without having a simulation model for that
component; LCD, SDRAM etc. Only a simple simulation is available without simulation
models, but they are still useful in order to remove the most critical bugs. The complete
debugging of these components was therefore done by experiments in hardware, as will be
described in the following subchapters.

43

Finite State Machines (FSMs) are used to describe the desired behavior of the circuitry in this
chapter. Appendix C shows how to describe a non-sequential FSM graphically. Appendix D
shows a way of describing a sequential FSM. In the latter case the FSM is designed in
conjunction with a timing diagram. In both cases the VHDL code is easily derived from the
descriptions of the FSMs. In the case where an FSM is regarded trivial, as in Chapter 5.1.1,
the FSM is not outlined. Refer to Appendix F for source code. All FSMs are designed from
scratch.

Parallel IV System ACE
Cable Port Interface
JTAG Port
ISP PROMs
5V Input
P160
Expansion 3 - |
Slot y e [s .5 SMA Clock
User Clock
Virtex-ll Pro
100 MHz Clock FPGA
MGT #2 Power
MGT #3 Supplies
MGT #4
MGT #1 MGT Power
Supply
SDRAM
125 MHz MGT s : ‘n-rax-u-ﬁ DIP Switches
Clock | o] o) |we Program
Status LED
RS-232
LCD Port
Program
Button
MAX3223C

Push Buttons LEDs VisionProbe
Port

Figure 5.1: Vitex-11 Pro Development Board [19]

44

RJ-45 Connector
for

10/100 Ethernet PS/Z Connector
usBe RS-232 for
Connector Connector Keyboard

: |
. El e

Interface :
i P Ry i - MAX3221C
Interface ; m 5 g
Flash/SRAM
LCD Devices
Contrast
Control

LCD Connector
or
User K0

S0 0ct.2001 Rev.l

Broadcom
10/100 PHY

Figure 5.2: P160 Communications Module [20]

5.1.1 Light Emitting Diodes (LEDS)

The easiest component to use on the development board is a LED. Figure 5.3 shows how one
LED is connected to the FPGA. As can be seen from the figure, the LED will turn on when
the 1/0 outputs a current less than 2.5V. A resistor is connected in serial with the LED, to
limit the current.

25V
FPGA
r------------ - - - - - - - -=-=-=-=-=- 1
| Continous signal ' V\V\
I 1/0
I Long/short signal LED FSM |
| A |
! Clock '
: Reset :

Figure 5.3: One LED Connected to an 1/0

When giving a long “0’-signal to the 1/O, the LED will glow bright. The shorter the signal is,
the weaker (and shorter) the led will glow. If the signal to the 1/O is too short, the LED will
not glow at all. To accommodate this, we can make a design that makes the LED glow for a
minimum amount of time. The minimum time chosen for this project is 1/100 second. This
design is shown at block level in Figure 5.3; implemented as LED FSM.

45

5.1.2 CPU Reset Push Button

Figure 5.4 shows how the CPU Reset push button is connected to the FPGA. This button is
dedicated to the CPU that is integrated on the FPGA, but it may also be use by other modules.
Note that it has an external pullup resistor attached to the input. Thus, every time the button
has been pushed and released, the wire going into the I/O is pulled up to “1°.

This button is in this project used as a global asynchronous reset. Detailed information of how
this button is connected to the FPGA has not been found. From experiences, it appears to have
a built-in “Push Button FSM”, much the same as the one described in 5.1.3. The CPU Reset
push-button works as follows:
e When the button is activated and held down, nothing happens.
e When releasing the button, it is activated and one short low signal is sent to the
attached circuitry.

Figure 5.4: CPU Reset Push Button

5.1.3 User Push Buttons

Figure 5.5 shows how one user push button is connected to the FPGA. When the button is
pushed down, the wire connected to the 1/0 is pulled down to ground. A Continuous Pulse is
made as long as the button is down. When the button is released, the current in the wire to the
I/0 must be pulled up. A pullup-resistor as shown in Figure 3.12 can be used to accomplish
this. If this resistor is going to be used, it must be specified in the design. This can be done
either in the VHDL-file where the push-button is used, or in the User Constraint File (UCF).
The UCF is also where to associate signals in the VHDL-design, with pins on the FPGA. The
pullup-resistor is activated when programming the FPGA.

K
Clock —T)

Reset

I
I
I
o — /0 —¢ > Continous pulse :
: L{ Push Button FSM |—> One short pulse |
| |
! I
! I

Figure 5.5: One User Push Button

A continuous pulse is not always convenient. We often need a push button that gives one
short pulse also. That is, when the button is pushed down it should activate the attached

46

circuit only once. This is accomplished through the Push Button FSM as shown in Figure 5.5.
For this report, the one short pulse is one clock cycle. The details of the Push Button FSM are
described in Appendix C.

Before continuing, it is important to test the LED FSM and the Push Button FSM. This is done
by making a design that connects one push button to four LEDs; see Figure 5.6. The grey
zone indicates the test design (simplified). The design works as follows:

e LED 1: By connecting the Push Button directly to the first LED, the LED should glow
for as long as the button is pushed down.

e LED 2: By connecting the same input to a LED FSM, and then to a second LED, this
LED should flash for 1/100 second each time the button is pushed down.

e LED 3: Taking the input from the button through a Push Button FSM, the signal to the
third LED will be active for only one clock cycle. This led should not glow at any
time.

e LED 4: By taking the output from the Push Button FSM, then connecting it to a LED
FSM before outputting it to a fourth LED, this LED should flash for 1/100 second
each time the button is pushed down.

FPGA
|\ - """ -"”-""”>">”>"~"="="="="="=~"="=~"=""=-”¥ "7 I
' [
Push Button [®}——— 1/0 > > /0 —+——m LED 1
' [
' [
| . LED FSM > 1/0 : @ LED2
100 MHz Oscillator : I/0 > |
|
| L Push Button FSM | > 1/0 — @ LED3
' [
Reset [m] +— 1/0 > |
|
| L[LEDFSM | > |/0 ——m LED4
' [

Figure 5.6: Test of LED FSM and Push Button FSM

5.1.4 Dual In-Line Package (DIP) Switches

The DIP contains 8 identical switches, each connected to an 1/O. They are connected to the
I/Os the same way as the User Push Buttons; see 5.1.3. Thus, the internal pullup resistors in
the 1/0s must be attached for every switch in the DIP; see Figure 3.12.

Figure 5.7: lllustration of One Switch in the DIP

47

5.1.5 Liquid Crystal Display (LCD)

As can be seen from Figure 5.8, the LCD acquires 10 1/Os of the FPGA. Details of the LCD
FSM are left to Appendix D. The LCD FSM controls one write to the LCD.

FPGA

I ___________________________ a

I
: LCD Ready «—— Data AN Yy I
: Start —— 8 K
| Data —4>; LCD FSM | Register Select /O | LCD
| Register Select —> B 7 :
I

I
I
: Clock J Enable 5| 170 |
| Reset :
|

Figure 5.8: LCD FSM

There are two types of registers in the LCD; an instruction register and a data register, each of
8 bits. Thus, all data written to the LCD consists of 8 bits. The Register Select determines
whether data should be written to the data register or the instruction register. The data register
will display a character to the LCD. The instruction register will clear the LCD, set the next
position for writing a character etc.

At startup an init sequence is performed. Seven instructions are then written to the instruction
register of the LCD. The init sequence is written again every time Reset goes low. One write
sequence in the LCD FSM works as follows:
e When LCD Ready is high, it indicates that the LCD is ready to be written to.
e By setting Start high, Data and Register Select are stored in the LCD FSM and then
passed on as output to the LCD.
e LCD Ready goes low to indicate that the start of a new write is not possible.
e At the appropriate time, the LCD FSM enables the LCD by setting Enable high for a
given time, before setting it low again.
e Depending on the kind of instruction that has been written to the LCD, there is a given
time to wait before the LCD is updated.
e When done, LCD Ready goes high to indicate that the start of a new write is possible.

48

Figure 5.9 shows how the LCD FSM was tested and verified in hardware. The outputs from
the LCD FSM to the LCD are the same as in Figure 5.8 and are omitted here. The grey zone
indicates the design needed to put this design to work (simplified).

FPGA
[mmmmmmmmm e mm T2
|
|
|
il e e ioReady <
: j) i Start 1 :
Write to Data Register [m} —1 /0 : Data !
| : 87| LCDFSM | !
| —Register Select —>; I
|
Write to Instruction Register [} L 1/0 > |
|
| I
|
100 MHz Oscillator —l 1/0 Clock :
| |
|
Reset [m] : /0 Reset |
|
|

Figure 5.9: Testing the LCD FSM

The Data to the LCD is given by the DIP switch. Start will be activated whenever one of the
two attached push buttons is activated, and LCD Ready is high. When the Write to Data
Register push button is activated, the Register Select is set such that a character will be
written to the LCD. When activating the Write to Instruction Register push button, the
Register Select is set to write an instruction like “Clear LCD” etc.

5.1.6 RS232 — UART Communication

At the time a communication between the PC and the FPGA was needed, the Communication
Module was not available; Figure 5.2. Thus, the RS232 port on the Development Board was
chosen to establish this communication. Due to limited time of completing this report, the
USB and Ethernet connections of the communications module have not been used.

A PC has serial ports that are controlled by a UART. Table 5.1 (second column) shows how
the UART was set up for the work in this project. There is no UART at the Development
Board, so a receiver module (RS232RX) and a transmitter module (RS232TX) are needed;
Chapter 4.4. The last two columns show the parameters chosen for these two modules.

- PC FPGA FPGA
(UART) (RS232RX) (RS232TX)
Input Clock UART Clock 100 MHz 100 MHz
Baudrate 115200 > 115200 < 115200

Parity None None None
Data bits 8 8 8
Stop bits 1 0.5 >1

Table 5.1: The Relation between UART and FPGA Communication

49

Prior to making the RS232RX and the RS232TX modules, the time (ns/bit) to receive or
transmit one bit should be known. This must be calculated with respect to the selected UART
baudrate. The calculation is simple:

1s

—————— ~8,680.55 ns/bit

115200 bits

That is, one UART clock cycle lasts 8,680.55 ns. In addition to the data bits and the stop bit,
there is also a startbit. Thus, there are ten bits to be transmitted/received, for each byte.

The Development Board has a 100 MHz oscillator. It is not possible to derive a clock signal in
the FPGA that exactly matches the UART clock. In both the RS232RX and RS232TX
modules the time spent for sending/receiving one databit is 8680 ns. This is 5,55 ns faster than
the UART. The time spent for the startbit and the stopbit differ in these two modules.

RS232RX

The top row of Figure 5.10 illustrates a PC transmitting one byte through the UART. When
idle, a logical ‘1’ is continuously transmitted. When sending a new byte, a startbit is first
transmitted. The startbit is logical ‘0’ for one UART clock cycle. In the following 8 cycles the
byte is transmitted, one bit at a time. At the end of the transmission, a stopbit (logical ‘1’) is
transmitted.

1qdoas

X

o|p!
Hqguels
039
Lyq
q
€)q
7iq
Glq
919
/)q
9|p!

PC (Data transmit)

cre bl

RS232RX FSM {{%%%IIIIH

o|p!

lqgyiels

I Sample point

Figure 5.10: RS232RX vs. UART

In the middle row we can see the clock signal used in the RS232RX module. The dark squares
indicate a fast oscillating clock. As can be seen, this is a clock with variable speed. It is used
to control the RS232RX FSM. Arrows indicates at which point the samples are made; half way
through one clock cycle.

The states of the RS232RX FSM are shown at the bottom row of the figure. When idle,
nothing is done. When a startbit is detected, the RS232RX FSM changes state to startbit. The
delay from idle to startbit is less or equal to 20 ns. This is a relatively short time compared to
one UART clock cycle, and no special actions are acquired for this. The following RS232RX
FSM states are each 0.55 ns shorter than the UART clock. This is a relatively short mismatch.

50

Because the bits are sampled half way, the mismatch may be ignored. The stopbit does not
need to be sampled, so the RS232RX FSM is leaving the stopbit state after half a UART clock
cycle. Thus, the stopbit is 0.5, as shown in the third column of Table 5.1. Doing it this way
will ensure that the FSM is guarantied to be ready for the next startbit from the UART. In
summary, the RS232RX has a slightly faster baudrate than the UART as indicated in the third
column of Table 5.1.

The RS232RX module is shown at block level in Figure 5.11. The RS232RX FSM is
automatically started by the incoming startbit through RXD. When one byte has been
received, it is indicated by the Byte Ready signal. The Incoming Byte may then be read.

FPGA
/- - - -"—-"-"=-""-"="-"=""="="="="="="="="—"=-"=-”= |
| . |

Incoming Byte <«-£—
! 87| Rs232RX FsM —"22_{ /0 |
: Byte Ready «— :
N A

: Clock :
| Reset |

Figure 5.11: Block Level Diagram of the RS232RX Module

RS232TX

The middle row of Figure 5.12 illustrates an FPGA when sending one byte. When no byte is
transmitted, or when the transmission is completed, a logical ‘1’ is continuously outputted.

The top row illustrates a UART when receiving a byte. It is assumed to behave as illustrated in
the figure. That is, when it receives a startbit, the UART clock is synchronized to rising edge.
Then 10 samples are made at the following 10 falling edges, as illustrated by the arrows.
Because the samples are made half way through one clock cycle, it doesn’t matter that the
RS232TX FSM is slightly faster than the UART.

The RS232TX FSM is illustrated in the bottom row. An extra delay is inserted after the
stopbit, to ensure that the UART is always ready to receive a new byte.

v 0

2 8

3 T T T T v T T g T

T 5 & & &= & = = = ©

= o - N w N w o) ~ =
PC (UART clock)
FPGA (Data transmit) T Extra delay iserted
RS232TX FSM ettt sttt sttt

oIp!
01q
(Rlle]
alq
€1q
g
Sluq
99
Jalle|
9|p!

ligiyiels
11qdoas

1 Sample point

Figure 5.12: RS232TX vs. UART

51

The RS232TX module is shown at block level in Figure 5.13. When the RS232TX FSM is
ready, a start signal may be given. The Outgoing Byte to be transmitted is then sampled by
the RS232TX FSM and transmitted one bit at a time through TXD.

Start FSM ——>

|

|
: Outgoing Byte —£> |
I FSM Ready «—— RS232TX FSM XD > 1/0

|
|
|
|
: Reset

|
|
Clock ———— |
|

Figure 5.13: Block Level Diagram of the RS232TX Module

Testing the RS232 Communication between the PC and the FPGA

Figure 5.15 illustrates how the RS232 communication was tested and verified in hardware.
The grey zone is a simplified view of the test design. All FSMs are attached to the oscillator
and the reset push button. A simple user interface was made to run on the PC. This interface
was used to send bytes (typed on the keyboard) to the RS232RX module. It also received
bytes from the RS232TX module, and displayed on the monitor as characters.

When sending one byte from the PC, the byte is transmitted through the UART and then into
the RX232RX FSM. When one byte has been received by the RS232RX FSM, the byte is
passed on to the LCD FSM. The signal in the RS232RX FSM that indicates when data is
ready is used as a start signal to the LCD FSM. Also, this signal goes to a LED FSM, thereby
making the attached LED flash every time a new byte is received. This is done in case the
LCD FSM should have been set up wrong. The Register Select (RS) of the LCD FSM is set to
'l'. Thus, every byte is written to the data register of the LCD and then printed out as a
character. The speed of sending a byte from the PC to the FPGA is in this case limited to the
rate the keyboard is set up to repeat characters. If it should have been necessary, data could
have been read from file and then transmitted at maximum speed.

The Data sent from the FPGA to the PC, is determined by the DIP-Switch. To begin with it
was advantageous to send one byte at a time. Each byte could then be inspected as it was
received by the UART and displayed on the monitor. A push button connected to a Push
Button FSM was used as the start signal to the RS232TX FSM to accomplish this. Also, the
start signal was connected to a LED FSM so that it was possible to inspect that a start signal
had been given.

Sending bytes at maximum speed from the FPGA to the PC is accomplished by another push
button. This push button is not connected to a Push Button FSM. When pushed, it is therefore
passing on a continuous start signal to the RS232TX FSM. Then every time the RX232TX
FSM is ready, the byte specified by the DIP Switch is transmitted to the PC.

In this design it was necessary to do some debugging in hardware, because there was one bug

left after simulation. The bug behaved in such a manner that sometimes one byte was not sent
or received correctly (both sides of the RS232 connection). The debugging was done such that

52

many identical bytes were transmitted for some time; then observing the results. At first, the
startbit seemed to have been lost. Making small changes in the design (RS232 modules) fixed
the problem, but introduced a new one. It now appeared as if the stopbit were sampled by the
RS232RX. The bug turned out to be a latch. That is, a memory bit that is updated
asynchronously rather than on the rising edge of the clock. For synchronization the latch was
replaced with a D flip-flop (register), and the bug disappeared.

The time spent for this debugging took a little more than one week. At a later stage of this
project, it was proven to be time well spent. In the final design, as shown in Figure 4.16, only
one LED was needed for debugging. It was connected to a signal that should have made the
LED flash, but it was glowing continuously instead. It could have taken months to have this
bug discovered if there should have been bugs in any of the RS232 modules.

Compatibility Mismatch between the UART, RS232RX and RS232TX

The RS232RX and RS232TX modules are each made to be compatible with a UART.
Because of differences in the startbit and stopbit states of the two modules, there is one
special case were incompatibility occurs; Figure 5.14.

UART
A

A
RS232RX »| RS232TX

Figure 5.14: Compatibility Mismatch

The figure illustrates a UART that sends data at full speed to an RS232RX module. The data is
then passed on to a RS232TX module, before it is sent back to the UART. As can be seen from
the last column of Table 5.1, the RS232TX has a baudrate slower than 115200. Thus, the
mismatch occurs in the RS232TX module. By studying the middle illustrations of Figure 5.10
and Figure 5.12, the mismatch becomes obvious. This mismatch will always occur in the
modules presented here, no matter what baudrate is chosen.

However, the special case described above is of no interest for this project. The reason for
why this case is mentioned at all is because the setup in Figure 5.14 is one obvious way of
testing the relationship between the UART, RS232RX and RS232TX. By sending a
continuous datastream from the UART, data sent could be compared with data received by a
simple program on a PC.

5.1.7 MAX3221C/ MAX3223C

The MAX3221C and MAX3223C are Integrated Circuits (ICs) that drives the RS232 signals
between the FPGA 1/0s and the UART. They can drive signals at a maximum speed of 250
Kbit/s. There is no way to (re)configure these ICs after the have been soldered onto the
Development Board. The reason for commenting these ICs is only to underscore what
components are needed for making an RS232 connection. These ICs are illustrated in Figure
4.16 and Figure 5.1.

53

preoqAad] I0TUOIA

@D7 01 Ja10eieyP uld 133s163Y e1ed 3Y3 01 31M e saljdwil , |, = (SY) 109196 J31s163Y

V r-———"—--" """ —-"—-"—-—"—-"—-—"—-"—-"—-"—-"—-"—-"—-"—-—"—"—"—"—"—"—"————— - hl
92e4191U] 43S [_
L o/l [« O/l [« —{H] 1953y
............. _ axt |
............. | [
o o/l L O/I [«—+—m 1038||12S0 ZHIN 001
©
_ =5 Apeay WS4 !
I Rl () I
| 22 AH_J -
anl — o a3 NS4 X12ETSY O/l [
|
_ |_R g > Wsaves _
I < va D
PaAIRY 2149 B " o/l WS4 @31 —{ WS4 uonng ysnd |— o/ Alnlm_ (234q 3u0) e1EP PUBS
[1 [
_ . Mned oAl - |
214g puss B—— 0O/I WS4 31 < O/l [«——{m] (s214q Auew) exep puas
|

Figure 5.15: Test of the RS232 Communication
54

5.2 Software Solutions

The Operating System (OS) on the PC running the User Interface (ids.exe) as shown in Figure
4.16 was Windows 2000 Professional (later upgraded to Windows XP), while the design
shown in Figure 5.15 was run under Windows 95. The programming language chosen was C,
because skills with this language were already at hand. Thus, Microsoft Visual C++ 6.0 was
first chosen as compiler for ids.exe.

Unlike Windows 95/98, Windows NT/2000/XP has strict control over 1/O ports [21]. Making a
program that uses the serial ports, like ids.exe, is not easy to run under Windows NT/2000/XP.
ids.exe is designed to run at the command prompt. When starting ids.exe from Windows XP,
an error message is displayed; see Figure 5.16 (top). Doing a debug run from the compiler
itself does not work out any better as shown in Figure 5.16 (bottom). Having administrator
privileges did not make any difference.

ids.exe has encountered a problem and needs to close.
We are sory for the iInconvenience.

If pou were in the middle of something, the infarmation pou were warking on
right be lozt.

Pleaze tell Microsoft about thiz problem.

“We have created an error report that you can zend to uz. We will treat
this report a2 confidential and anonymous.

To see what data this error report containg, click here.

[Debug | Send Emor Report I

|
Microsoft Yisual C++ I

LB
‘!.{) Unhandled exception in ids.exe: 0xC0000096: Privileged Instruction,

Figure 5.16: Access to Serial Ports are Denied With Little Informative Messages

Open source code to come around this problem is available. A driver (porttalk.sys) and a
program that uses the driver (allowio.exe) are both available at [21]. In order to use the driver
without installing it, administrator privileges are needed. Otherwise, the driver must be
installed by an administrator and the machine must be restarted in order to load the driver. It
is then available for any user.

An example of how to use these programs is ““allowio.exe ids.exe 0x3f8 0x2f8”. allowio.exe
will open the ports 0x3f8 (COM1) and 0x2f8 (COMZ2) for use with ids.exe. It uses porttalk.sys
internally to open the ports specified at the command line for the application specified
(ids.exe). After sending this command to the OS from the command prompt, it returns to the
command prompt rather than printing the menu in ids.exe; see Figure 5.18. Then, when giving

55

the first command to ids.exe, the OS returns an error message saying that an unknown
command was given at the command line. The second command will be sent to ids.exe as
intended. This process repeats itself as long ids.exe is running.

At first this seemed to be a peculiar bug. By doing some experiments, it is appeared that
allowio.exe expects that a new window is created from ids.exe. By changing the source code
of allowio.exe in order to be compatible with programs running from the command line, could
have fixed this problem. Even though the source codes of allowio.exe and porttalk.sys are
short, it takes considerable time to make changes to them because skills in C++ are acquired.
Another way of solving this would be to make a program that creates a new window when
started. However, skills in C++ would have been needed for this.

To come around these problems, a rather unconventional solution was tried out. Windows 95
was installed at an old PC. The compiler chosen for this PC was Borland C/C++ 4.0. This is a
compiler that was originally designed for Windows 3.1. It compiles 16-bit executables.
Making a design that uses the serial ports, with these tools, turned out to be a trivial matter.
Now, the menu of ids.exe was printed out; see Figure 5.18. ids.exe was executed with no
problems at all, and the design in Figure 5.15 was tested and debugged as described in
conjunction with that figure.

It was desirable to run ids.exe under Windows XP. Borland C/C++ 4.0 has an option that
compiles command line programs, like the one shown in Figure 5.18, into an EasyWin
program. When starting an EasyWin program from the command prompt, a new window is
created. It contains exactly the same as we would expect from a program designed to be run at
the command line. Now, by compiling ids.exe with the EasyWin option and then copy it over
to the PC running Windows XP, it was expected to run without problems by using allowio.exe
and porttalk.sys. It did not turn out as expected. A new window was created, the menu was
printed out as in Figure 5.18 and no error message was given. However, there was no way of
making any communication through the serial ports. Many attempts were made to put the
EasyWin version of ids.exe to work. Compiler options in Borland C/C++ 4.0 were explored,
the source codes of porttalk.sys and allowio.exe were again examined and the UART setup in
ids.exe was checked over and over again. Details of UART are given in Appendix E.

Each time a new version of ids.exe was made, it had to be copied from the old PC to the new
one. By accident, a version of ids.exe that was based on running from the command line (not
EasyWin) was copied. When starting this version under Windows XP, it gave no error
messages as the ones shown in Figure 5.16. This turned out to be quite a surprise, but it was
expected not to be able to making any communication at all because allowio.exe had not been
used. By testing the communication anyway, it turned out to work perfectly well.

By copying Borland C/C++ 4.0 over to a hard disk that is available by using Windows XP,
the old PC could be removed. When starting Borland C/C++ 4.0 under Windows XP, a
warning is given; see Figure 5.17. Of course, running old software like this compiler under
Windows XP is far from ideal. It was good enough for use with this project, but for future
projects other solutions should be tried out. A redesign of porttalk.sys and allowio.exe would
be a good (but time consuming) start.

56

Borland C++ 4.0 I

L] 'f This wersion of Microsaft Windows is nok compatible with Microsoft Windows 3.1, Proceed at your own risk,
L3

Figure 5.17: Running Borland C/C++ Under Windows XP

By taking a closer look at [21] it was found that 16-bit Windows programs, when running
under a 32-bit Windows OS (Windows NT/2000/XP), will run as it would be expected to run
under a 16-bit Windows OS (Windows 95). As noted in [21], there may be timing problems
when doing this. By experience from testing the design as shown in Figure 4.16, these timing
problems were of little concern because they were easily detected. That is, when a timing
problem occurred, nothing seemed to work.

The timing problems occurred (rarely) in two ways

e A codepage can be said to be a driver for the keyboard. There is one codepage for
each country. The codepage was not loaded so that the keyboard was left undefined.
The way to handle this bug was to end ids.exe, then manually change the codepage at
the command prompt, and then restart ids.exe.

e It was not possible to write to CAM. That is, when trying to verify a write to CAM it
failed in all cases. A specific solution for this bug was not found. It is highly possible
that the solution mentioned above would have fixed this bug too. Further experiments
were not acquired because the CAM had been verified, and it was time to start writing
this report.

To remove any doubt about having bugs in the FPGA, ids.exe could have been run under
Windows 95 at an old PC.

57

Shortcut to crad.exe - ids.exe

Microsoft Windows XP [Uersion 5.1.26801
(C>» Copyright 1985-2001 Microsoft Corp.

m:swww_docs>cd researchsbc4vbin

M:swww_docssresearchn\BC4“BIN>ids.exe

Log to file “m:“wuuw_docssresearchhiisessourcesidssids log.txt™

Type 'h" for help

> Help

Main Menu

Project ids:

= CAM Init Cwrite to all CAM—words)
Urite word to dataset on PC and CAM
Urite word to dataset on PC
Urite word from dataset to CAM
Display CAM-data <(all words)
Display CAM-word {(single word>
Uerify CAM—data

options:

Test of »s232px.vhd and rs232tx.vhd
Loop LCD CodePage

Give LCD-instruction

Write to CG RAM

=
]

n=-= l'lH-I—H‘PE" =] O L D
nnnne

Other commands:
= Help
Esc = Quit

Figure 5.18: ids.exe Running in 16-bit Mode Under Windows 95/2000/XP

58

6 RESULTS

Only a functional test of this design has been performed; as described in Chapter 4.4. This
was made possible by making RS232 modules that could communicate with a UART;
Chapter 5. The UART at the PC used for this project has a maximum speed of 115200 Kbit/s
when running from the command prompt; see Figure 5.18. As the speed of a string matcher
should be measured in Mbit/s or even Gbit/s, the RS232 connection is useless for the purpose
of testing the maximum performance of this design.

Testing the maximum performance could have been done by using the SDRAM available at
the Development Board; see Figure 5.1. This is left as a suggestion for future work due to the
time left of writing this report.

Considerations that must be made when making a fast design are the area used and delays
through various parts of the circuit. The synthesize tool (Xilinx ISE 6.1.03i in this case) is
providing various reports to help us making a better design. The Synthesize Report gives a
good overview over used resources, but the timing estimates are not expected to be achieved
in hardware. These estimates are still useful in order to give hints about where in the design
there might be a bottleneck. The Post Place and Route Static Timing Report gives timing
estimates that can be expected to be reliable when running the design in hardware. However,
these estimates are far from as detailed as those given in the Synthesize Report.

6.1 Estimates of Maximum Performance

When the synthesize tool optimizes a design for speed, it is important to not use all the
resources (area) in the device. That will result in less flexibility for the synthesize tool. In this
project it is therefore important to be aware of how much of the slices are used, and then
compare it with the predicted maximum speed.

Table 6.1 shows two examples (row 1 and row 3) of CAM-designs that have been

functionally tested as described in Chapter 4.4. The others are processed down to the
bitstream that is used for programming the FPGA, but not tested in FPGA. Assuming we get a

59

match for every incoming packet, it is possible to predict the worst case that a string matcher
should be able to handle. This is an important consideration to make when designing a system
for detecting and handling massive attacks. In the column reporting max speed, we get a
prediction of the worst case of this design. The numbers have been rounded down to the
nearest integer. Note that a lower speed grade indicates a faster device (-7 is faster than -6,
for example).

The following observations are made:

Small CAMs (134 bytes in this case), implemented in an FPGA with a fast speed
grade, are capable of taking an input bit stream of 1 Gbit/s; row 1. By using an FPGA
with a slower speed grade, the Max Speed of the bit stream is significantly less; row 2.
In both cases, the Slices Used is low, which gives a high flexibility of optimization by
the synthesis tool.

Using the same two devices for a larger CAM (1822 bytes), we can see that the two
devices now have the same performance; row 3 and row 4. Note that almost all of the
slices are used in row 3, and that it will give little flexibility for optimization by the
synthesis tool. That is why the device in row 4 is able to run as fast as the one in row
3. The reduction of performance for the device in row 3 is 22%, while in row 4 the
reduction is only 6%.

The CAM in row 5 is faster than the one in row 4. This is expected because the device
in row 5 has a faster speed grade than the device in row 4.

By increasing the size of the CAM in one type of device from 1822 bytes to 3601
bytes, the performance is reduced by 5%; row 4 and row 7. We find the same
reduction by comparing row 5 with row 8.

By comparing row 6 with row 9, we find that the performance reduction is less than
for the comparisons in the previous item; 2%.

The maximum number of words is 256, and will be further discussed in Chapter 6.2.3.

8 2 5% = £

= (¢B] o™

= - S 28 €8 |58

> -‘% = (%) X ~2 o - 2 =Rl o

< =) & © 8 sus2 2T | 83

> | 5 | £ | 2 | & |EE3E| 23 |5t

EL_ 8 < ; m = é 3] g n D = E’E

o o ST LS =

e 2 S Lol = s =

= o n = nn 8

v o B - c

X x H =
1 XC2VP7 -7 fg456 8 134 129 10 1032
2 | xc2v6000 -4 bfo57 8 134 108 1 864
3 XC2VP7 -7 fg456 128 1822 101 93 808
4 | xc2v6000 -4 bfo57 128 1822 101 13 808
5 | xc2v6000 -6 bf957 128 1822 105 13 840
6 | xc2v8000 -5 ff1517 128 1822 102 9 816
7 | xc2v6000 -4 bfo957 256 3601 96 27 768
8 | xc2v6000 -6 bfo57 256 3601 100 27 800
9 | xc2v8000 -5 ff1517 256 3601 100 19 800

Table 6.1: A Selection of Some Successfully Implemented Designs

60

These results are achieved by processing 8 bits per clock cycle. By making a design that can
process 32 bits per clock cycle, the expected throughput will be 4 x 800 Mbit/s = 3.2 Gbit/s.
The design in [11] as described in Chapter 2.5 also processes 8 bits per clock cycle, but at a
rate of only 296 Mbit/s. The key to its high performance of 1.184 Gbit/s was to connect 4
modules in parallel.

A CAM takes up a large area in an FPGA,; Chapter 4.2.3. For this reason it is not possible to
implement all strings in the Snort rules in one FPGA. The design in [3] uses a method to
implement many strings in one expression, thereby saving area in the FPGA. The cost of this
is speed; all reported results from this design are less than 7 Mbit/s.

6.2 Considerations of performance

6.2.1 The Delay Through one Word in CAM

The FPGA used in this project has 160 slices in a column, thereby defining the max width of
a word to 160 bytes; see Figure 4.9. It would be interesting to see if the path through one
word could be optimized. Table 6.2 (refer to Figure 4.8, Figure 4.9 and Figure 4.10) shows
delays through a 32-byte word. The data are taken from the Synthesis Report where only the
CAM files have been synthesized.

Gate Delay (ns) | Net Delay (ns)

Pl (logic) (route)
SRL16E CLK>Q 2.720 0.360
MUXCY S-> COUT 0.334 0
Long chain of MUXCY's CIN - COUT 0.036 0
Last MUXCY CIN > COUT 0.600 0.360
Synchronization Register - 0.208 -

Sum: 6.844

Table 6.2: Delays Through One 32-Byte Word

From the table (the green cell) we can se that increasing the length of the carry chain (through
the MUXCYSs) adds a delay of 0.036 ns for each MUXCY that is added. This should be taken
in consideration when designing a new CAM. By adding any more of the other parts will not
affect the total delay through the word. From this table there is no obvious way of further
optimization for speed.

6.2.2 The Read and Write Path

The read and write procedures never occur simultaneously in this design. It is therefore of
great interest to know the delay through these paths separately. It is the read path that is of
greatest interest; as outlined in Chapter 4.2.1. It can probably be read out of the various
reports generated by the synthesis tool. However, it takes more experience than what is at
hand to read out this information. If it is so that the read path is faster than the write path,
these paths should be treated separately. Two different clocks could have been used, for
example. Future work will include finding these paths, and then give better estimates for
maximum performance.

61

6.2.3 Optimizing the Encoder

When trying to synthesize a 512-word CAM, the synthesis tool worked for about one hour
before giving a strange error message. The message was that an unknown error had occurred
and that 2Gbyte of system RAM was not enough to complete this job. The computer was
equipped with 1Gbyte system RAM, and the virtual memory was set to 3Gbyte. This problem
occurred when synthesizing the encoder.

The encoder is one component that obviously can be optimized; see Figure 4.10. In this
project, the encoder is described in VHDL as a standard encoder; p109. An encoder like this
takes a lot of resources. It outputs an address if there is exactly one match. To check if there is
exactly one match, it must also be checked that all the other inputs are low. It is this check
that consumes resources.

Since the data chosen for CAM in this project only produces one match at a time as described
in Chapter 4.2.1, the encoder should better be described *““one-hot”; pl76. A “one-hot”
encoder is such that it does not check whether the other inputs are low when a match is
received. As a little experiment, a 32-word “one-hot” encoder was made and synthesized by
itself. Also, a standard 32-word encoder was synthesized by itself. From the Synthesis Report
of these two encoders, it could be seen that the “one-hot” encoder was about twice as fast as
the standard one. When using fewer resources for the encoder, such as a “one-hot” encoder, it
iIs most likely that CAMs as described in this report can be synthesized with many more
words than 256. Even better, the designs are expected to perform faster also.

62

7/ CONCLUSION

A variable word-width CAM has been designed that is well suited for Snort rules. When
taking advantage of a programming tool the time needed for making a new CAM, described
by VHDL, is less than one second. The flexibility of such a CAM, and the short time needed
to make the VHDL-files, will be important for NIDSs since they need to be changed
frequently for research purposes. The implemented architecture functionally tested on the
hardware platform that was chosen for this project can process 128 words (1822 bytes) in
parallel at 800 Mbit/s. With an optimization of the encoder it is most likely that the speed of
this CAM will increase, and also that more words will fit into the FPGA. Future work
involves making an even more flexible CAM. It should be able of changing the number of
words, and the length of each word runtime. That is, a new CAM should be able to be made
without producing new VHDL files.

63

64

8 APPENDIXES

A CD-ROM

This document in
e Word 2003
o Pdf

Source code
e All source code used in this project in directory source
e All source code converted to HTML in directory html

Borland C/C++ 4.0 (Designed for Windows 3.1)
e Aninstalled version is found in directory BC4
e Original source for installation is found in directory BC4_install

65

66

B Exploring the Properties of an SRL16E by Simulation

Figure 8.1 shows the waveforms from the simulation of an SRL16E by using ModelSim 5.6f
provided by ModelTech. The simulation is created by a VHDL-design. By giving this design
stimuli from a testbench (also written in VHDL), we are able to give input and measure

output of the design just as if we were testing it by hardware.

Three observations/conclusions are made:

1. At the first rising edge CE is set high for the next 16 clock cycles. The address is set to

7 (“01117), and remains at this value as long as CE is high. The output Q asserts the
input values after 8 clock cycles. Conclusion: The address controls which of the 16
registers to output on Q.

. CE is set low, but the address remains the same. If shifting was enabled, we would
expect to find a low output of Q at the indicated point. But the output is high.
Conclusion: The value found at this point is the value that the register at address 7 had
the time CE went low. CE can therefore be named as “Shift Enable” as well as “Clock
Enable”.

. At 285 ns the address starts counting from 0 through 15, one count each clock cycle.
The values on the output Q appear to be the reversed values to that of input D during
the first 16 clock cycles. Conclusion: The data is always shifted in on the least
significant address. The chosen address have no influence on which register is being
written to or how the shifting is done, it only controls the output Q.

Based on the above observations/conclusions it is now possible to make a more detailed
understanding of an SRL16E. Figure 4.7 shows how an SRL16E might look like inside.

67

Su oSy

su ooy

su 0se

suooe

I _

—

M1

Su 0S¢

>» ¢ UOlleAIasqQO

T UOIBAIBSAO

Su 00¢

—> Z UoleAIasqoO

Su 0ST
e

Su 00T

[

su0s 0

_I__/

stvifer)fer]T

tfor) 6] 8] 2]

o sk vl el 2]

T of

/o

LML

LML L L

LML L L L]

A1

90

Figure 8.1: Simulation of One SRL16E

68

C A State Diagram for a Non-Sequential FSM

Figure 8.2 illustrates the FSM from Chapter 5.1.3 by using a state diagram. Whenever we
have an FSM that is not sequential, such as this, a state diagram is often needed. It is possible
to write the VHDL code (almost) directly out of a state diagram. Also, far less time will be
spent on debugging. That is, we will debug the state diagram rather than the VHDL code.

Reset counter Push Button Down)<
N

4<Button pressed?)—
J{i

Set output activel clock cycle <—<counter < deIay?)—) Increment counter —

v

Reset counter

I

Y

Push ButtonUp)<

>,
7

Button pressed? >—> Reset counter ———@

<counter < deIay?)—) Increment counter —

Action

I
I
I
:False/no<—< If-condition)—)True/yes
I
I
I

Figure 8.2: Push Button FSM Diagram

69

70

D A Way To Describe a Sequential FSM

There is no need to use state diagrams (Appendix C) for FSMs that can be described
sequentially. The FSM described in 5.1.5 is sequential. It is not necessarily easier to write a

sequential FSM, as is the case with this one.

Table 8.1 gives timing parameters that must be met by the FSM. Figure 8.3 illustrates how to
use these parameters [22]. The bottom row of Figure 8.3 illustrates the LCD FSM. As with
state diagrams, most of the job is done when having illustrated the FSM like this. The tricky
part here is that it is easy to code one or more of these parameters wrong in the VHDL code,

and nothing works.

_ Symbol Min (ns) Max (ns)
Enable cycle time teycE 500 -
Enable pulse width PWey 230 -
Enable rise and fall time ter, ter - 20
Address setup time (RS, R/W enable) tas 40 -
Address Hold Time tan 10 -
Data Setup Time tosw 80 -
Data Hold Time th 10 -

Table 8.1: LCD Write Timing Parameters

RegisterSelect >§: ><
ot) TaH A
Read/Write Select \t /
PWey
LCD Enable ,Z‘ ‘\=
= Ter
—> —> |
Tosw t
Data)J Valid Data %
tCyCE
| (| (| | (|
LCD FSM L T T T
& g 2§ s 2 g 5 ¢2
™ = = o Y, = Y i (:I; ™
S 5 S ¢ z T
= =4 = o o,
—~
(0,]

Figure 8.3: LCD Write Timing Diagram

71

72

E Details of the UART

V0 | riw Note Bit 7 Bit 6 Bit 5
Port
03fg | W DLAB.b't - O Serla_l e Byte to transmit
transmit holding register
“ R DLA.‘B bit =0: Se_rlal port 1 Receive character
receive buffer register
« | gw | DLABDIt=1:LSBofserial | | op 5 A D rate divisor
port 1 Divisor Latch
03fg | Riw | PLABDIt=1: MSBoofserial | \\op ¢ 5 a5 rate divisor
port 1 Divisor Latch
“ RIW !I)LAB bit = 0: Serlgl Port 1 Reserved
interrupt enable register
Serial port 1 interrupt ID 11 = FIFO feature present
e | register 10 = FIFO feature not present Reserved
Receiver FIFO register trigger
« W Ser_lal port 1 FIFO control 00 =1 byte Reserved
register 01 = 4 bytes
10 = 8 bytes
11 = 14 bytes
DLAB (Divisor Latch
Access Bit). 0 = Receive
03fb | RIW Ser.lal port 1 line control puffer, transmit hoI('lllng, 1 = Set break 1= Stick parity
register interrupt enable register enabled
access enabled. 1 = Divisor
Latch Access enabled
03fc | RIW Ser_lal port 1 modem control Reserved
register
1 = Transmit
Serial port 1 line status shift and L = Transmit
03fd | R arp Reserved holding holding register
register .
registers empty
empty
Serial port 1 modem status 1 = Data Carrier Detect L :.ng 1 = Data Set
03fe | R . : Indicator Ready (DSR)
register (DCD) active . .
(RI) active active
03ff | RAW | Serial port 1 scratch register Can be used by the microprocessor to hold a byte. It is not used

by the serial port

Table 8.2: UART Serial Ports overview

73

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 = Enable 1 = Enable 1 = Enable receive data
m;dem status 1 = Enable receiver transmit holding available interrupt. In FIFO
interrunt line status interrupt register empty mode also enables time-out
P interrupt interrupt
000 = Modem status interrupt
001 = Transmit holding register empty interrupt
010 = Receive data available interrupt 0 = Interrupt pending
011 = Receive line status interrupt
110 = FIFO timeout interrupt
_ . 0 = Clears receive and
. -.Transmlt FI_FO 1 = Receive FIFO | transmit FIFO registers and
register cleared,; .)
. register cleared,; enters character mode
counter cleared bit is 2 . _ . .
self-clearing bit is self-clearing | 1 = Receive and transmit
FIFOs enabled
Number of stop bits:
(1) f i ;tgfoblt)its with 00 = Character length is 5 bits
1=Even 1 = Parity ch_ar I'en thpof 5 bits 01 = Character length is 6 bits
parity enable | enable 1=2 stogp bits with 10 = Character length is 7 bits
char length of 6/7/8 11 = Character length is 8 bits
bits
io:o back 1 = Enable 1 = Force OUT1 output é;?(egl%eg)t-To- 1 = Set Data Terminal Ready
P OUT2 interrupt | active . (DTR) active
mode active
ilnt:e:?r’tr;)?k i;olr:ramlng 1 = Parity error 1 =Overrun error | 1 = Data ready
1 =Clear-to- | 1=Change I 1 = Change _
Send (CTS) detected o 1_— Trailing edge of RI detected on DSR 1 = Change detected on CTS
. . signal detected . line
active DCD line line

74

F

Source Code

Each subchapter gives a brief description of the files.

F.1 CAM
These files are those needed for simulation and hardware implementation of a CAM.

e camdata.pl
o0 Parses the Snort rules for content parts. These parts are stored in camdata.txt. Only a
small part of camdata.txt is included here.
e cam_vhdl.pl produces the remaining files in this section. In this project camdata.txt was given as
input to cam_vhdl.pl
0 cam_top.vhd
= Top level module for a CAM. Binds together the files below.
cam_words.vhd
cam_word.vhd
cam_basic.vhd
compare.vhd
counter.vhd
decode.vhd
encode.vhd
O components.vhd
e th_cam_top.vhd
0 The testbench. Stimuli are automatically generated with cam_vhdl.pl.
e th cam_top.fdo
o0 Script for running the testbench in ModelSim. Generated with cam_vhdl.pl so that it runs
exactly the time needed to come through one simulation

O 000000

camdata.pl

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

#1/local/bin/perl5 -w

#

File = cam_content.pl

Author : Geir Nilsen { geirni@ifi.uio.no }

Created: Sep 3 2003

#

Description:

Extract bit-pattern from content-part of Snort-rules.
Choose rules that have only one content-part.

Store distinct patterns only.

Choose length of shortest and longest pattern to store.
#

$rulesdir = "/hom/geirni/www_docs/research/snort202_win32/Snort/rules";
@rulefiles = "Is $rulesdir/*_rules™;

$camfile = "camdata.txt";

$minLength = 4; # Bytes

$maxLength = 32;

Find content-part of rules
for $rulefile(@rulefiles){

open(INFILE, "<"_S$rulefile) or die
"Can"t open "_$rulefile."\n";

75

027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087

@rules = <INFILE>;
close(INFILE);

for $rule(@rules){
$contentParts = 0;

if($rule =~ /content:/){
@parts = split(/;/, $rule);
for $part(@parts){
if($part =~ /content:/){
$content = $part;

$contentParts++;
Remove anything before content-part
$content =~ s/”.*content:.*?\""//i;

Remove anything after content-part
$content =~ s/\"$.*//9;

}

Store content-part

if ($contentParts == 1){
push(@contents, $content);

}

Convert content-strings to hex. Store only distinct patterns
for $content(@contents){

$pipe = 0; # hex patterns are limited by pipes; |00 bc 55|
$char = "'; # Current character in content; ASCII or hex
$pattern = "'"; # Content converted to hex

Loop through current content-string
for ($i=0; S$i<=length($content)-1; $i++){ # -1 for newline

$char = substr($content, $i, 1);

Control over pipes
if($char =~ /\|/){

iT(I$pipe){
$pipe = 1;
else {
$pipe = 0;
next; # Skip to next character
}
Convert to lowcase hex
if(I$pipe){ # ASCIlI-value
$pattern .= sprintf("%x", ord($char));
else { # hex-value
$char =~ s/ //; # Remove blanks
$pattern .= "\I$char";
}

76

088 3}

089

090 # Store converted pattern

091 if((length($pattern) >= $minLength*2) &&

092 (length($pattern) <= $maxLength*2)){

093 $hexPatterns{$pattern} = "dummyValue™; # Keys will be distinct
094 3}

095 }

096

097

098

o9 # Print patterns, that have no subsets, to file

100 open(OUTFILE, ">"_$camfile) or die

101 "Can"t open "_$camfile.'\n";

102

103 @patterns = keys %hexPatterns;

104 $count = 0; # Count patterns that are written to file

106 HEXLOOP:
107 For($i=0; S$i<=$#patterns; $i++){

108 for($j=0; $j<=$#patterns; $j++){ # Search Tor subsets

109

110 next 1F($i==$J); # Do not compare a pattern with itself
111

112 next HEXLOOP if # Skip if subset is found

113 ((Iength($patterns[$i]) <= length($patterns[$j])) &&
114 ($patterns[$j] =~ /$patterns[$i]/));

115 }

116 print OUTFILE $patterns[$i]-""\n"";

117 $count++;

118 }

119

120 close(OUTFILE);

121

122

123

124 # mMsg

125 print

126 "\n"".

127 " Wrote ".$count." patterns to file: \""_$camfile.""\'"\n".
128 "\n"";

camdata.txt

66696c656e616d653d5c466978323030312e6578655¢C

6c736¥66253230

6a6176617363726970745c3a2f2f

64313368685b
216578616d706c65732F736572766c65742F536e6F6F70536572766Cc6574
616c6¢c5F7461625F636F6¢c756d6e73
0F0000000373686F7720646174616261736573
66696c656e€616d653d5c4355504944322e4558455¢

2e6173702e

2F766965772d736F75726365
4142434445464748494a4b4c4d4e415051525354555657414243444546474849
02010004820100

2e2e5chc

2F776169732e706¢C

496e64657820616620216367692d62696e2F
ce63d1d216e713cF39a5a586

2F73746F72652e636769

77

416d616e6461

212e70657266

901ac001900220089202200Fd023bTT38
217066646973706c61792e636769

2e6874706173737764

6e6T6e676d696e5T636e

2164666972652e636769
21616473616d706c65732F636T6e6669672F736974652e637363
3145646974446163756d656e74

666574697368
2169697370726T746563742161646d696e2153697465416460d696e2e617370
216e7374656¢c6560657472792e616470
6261636b646T6T72
2T75706c6161642e706¢C
616c6c5163616e73747261696e7473

cam_vhdl.pl
#1/local/bin/perl5 -w

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037

R R R R R A A A T
et L L L e

HH
HH
H#H
H#
H#

Author

File cam_vhdl .pl
Geir Nilsen { geirni@ifi.uio.no }

Created: Sep 4 2003

HH
HH
H#
H#
H#

HH A R R R
HH A R R R

H#
H#
H#
HH
HH
H#H
H#
H#
HH
H#
H#H
H#
H#
HH
H#H
H#H
H#
H#
HH
H#H
H#H
H#
H#
HH
H#H

Contents:

Global variables
Functions

Create fTiles:

Top level module: cam_top.vhd

module: | -> cam_words.vhd
module: |--> cam _word.vhd
module: | ---> cam_basic.vhd
module: | -> compare.vhd
module: |-> counter.vhd
module: | -> decode.vhd
module: | -> encode.vhd
testbench: tb_cam srll6e.vhd
package: components.vhd

- Print info to screen
- Extra stuff. Delete ???

(1) File need to be created only once.
For ease of use it is recreated anyway:
Entities must be given in these files to

in components.vhd. Doing it this way, it is easy to make changes

Generate variables necessary for creating project files

€9
€9
€9
@

produce correct code

H#
H#
H#
Hi
Hi
H#
H#
H#
HH
H#
H#
H#
H#
HH
H#
H#
H#
H#
HH
H#
H#
H#
H#
HH
H#

HHH R A A AR

78

0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098

HHH R A A AR

Hit Hit
General description: Hit
Hit Hit

H# Create VHDL source files for a CAM spesified at the command line. There ##
are no restrictions of how many CAM-words to create, and each CAM-word
may have any width. The physical dimensions of a spesific hardware gives

the maximum size. H#
Hit Hit
A CAM-word is designed by serialconnecting SRL16Es. The CAM-words are H#
then connected in parallell. it
Hit Hit
Choose number of patterns to read from '‘cam_content.txt", a file that Hit
contains patterns extracted form Snort-rulefiles (= number of CAM-words)
H# Default startposition in file is O. H#
Hit Hit
The testbench is primarily designed to work with Snort-rules or it
equivalent Tt
Hit Hit

HH A R R
T A T e T T A R B i

R R R R R R A A A T
et L L L e

H# Ht
Ht Global variables Hit
#H# Ht

R R R R R A A R T
et L L L e

$author = "Geir Nilsen { geirni\@ifi.uio.no }";
$prjName = "cam_srll6e";

$filename = "cam_vhdl.pl";

$sim_path = "m:/www_docs/research/ise/simulation/cam”;

$prjFileCam top
$prjFileCamCells
$prjFileCamGeneric
$prjFileCam basic

“*cam_top.vhd";
“*cam_words.vhd';
""cam_word.vhd";
""cam_basic.vhd";

$prjFileCompare = "compare.vhd";

$prjFileCounter = "counter.vhd";

$prjFileDecode = "decode.vhd";

$prjFileEncode = "encode.vhd";

$prjFileTb = "tb_cam_top.vhd";

$prjFileComponents = "components.vhd";

$prjFileFdo = "tb_cam top.fdo";

$totNumOfPatterns = 0; # Number of patterns found in Ffile

$posOfFirstPattern = 0; # Pos in file containing patterns

$posOfLastPattern = O;

@header = (); # Contains info about project. Header of project files

%entities = (); # Stores content of entities for use with
components.vhd

@patterns = (); # Patterns read from file. Each pattern is one word in
CAM

@lengthOfPatterns = (); # Length of patterns in LUTs. 1 LUT = 4 bits

$numOfPatterns = 0; # Patterns loaded

$numOFAddrBits = 0; # #bits needed to represent #patterns loaded

79

0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159

0
0

ven in #bits
ven in bytes

$longestPattern
$camSize

Gi
Gi

S L L L L L L
HH A R R R

Ht Ht
Ht Functions Hit
#H# Ht

S L L L L L L
HH A R R R

Takes one argument:
Number of elements to represent in binary
sub FindNumOfAddrBits{
my $numOfElements = $_[0];
my $numOfbits = O;
while($numOfElements > 1){
$numOfElements /= 2;
$numOfbits++;

return $numOfbits;

}

Takes two arguments:
Decimal number and number of bits to convert to
sub dec2bin{
my($dec, $bits) = @_;
my $bin = ""';
for(my $i=0; $i<=$bits-1; $i++){
$bin .= $dec % 2;
$dec /= 2;
3

return reverse($bin);

}

Takes two arguments:
Number of colums to use and whitch row to return
sub onehot{

my ($col, $row) = @_;

my $head = "0";

my $tail = "0";

$head x= $col - $row- 1;

$tail x= $row;

return $head."1".$tail; # return row number $row

}

Takes no arguments
sub getDate{
use POSIX qw(strftime);
my $date = strftime " %b %e %Y'", localtime; # b=month e=day Y=year
$date =~ s/\s+//; # Remove blanks returned by strftime
return $date;

}
Usage
sub msg{
print
"\n".
"Usage: ".$filename." -T Tilename numOfPatterns ™.
"[startpos(default=0)]\n".

" _$Ffilename." -c width words\n".

80

0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220

" "_$Ffilename.” -u 4 8 12 16 ...\n".

" -f : Read length of patterns from file.\n".
filename : Spesify which file to read.\n".
Assuming one character in file to be 4 bits ™.

and each line being one word.\n".
startpos : Startposition in file.\n".

"\n"".

" -C : Create CAM that have equal width to all words\n".

' width > Width in bits of words in CAM. Must be 4x value of ".
"integer.\n".

' words : Number of words in CAM.\n".

"\n"".

' -u : User-defined CAM taken from command-line.\n".

The width of each word is given at the ™.
*command-line._\n".
"\n".

" NOTE : When using the -c or -u switch, there is only a ".
"dummy data-set\n™.

All values must be 4x of integer.\n".

created in the testbench. Each element in the ".
"pattern-array indicates\n".

" the length of the corresponding word. These values .
"must be edited\n".

Il\nll;

manually. Be sure not to create any subsets.\n".

}

HH A R R R
T T e T T T R S T T

Hit Hit
Hit Generate variables necessary for creating project files Hit
Hit Hit

HH A R R R
T A T e T T T R e T

Parse ARGV. Like an amateur... TODO stuff herelll
i F($#ARGV==-1){

msgQ;

exit(-1);
3

elsif($ARGV[O] eq "-FDH{ # -T option
i F($#ARGV==2){
$camContentfile=$ARGV[1];
$numOfPatterns=$ARGV[2];

}

elsif($#ARGV==3){
$camContentfile=$ARGV[1];
$numOfPatterns=$ARGV[2];
$posOfFirstPattern=$ARGV[3];

else{
msgQ);
exit(-1);
}

$posOfLastPattern = $numOfPatterns + $posOfFirstPattern;

Load patterns from file

81

0221 open(INFILE, "<"_$camContentfile) or die

0222 "\n Can"t open file: "_$camContentfile.'"\n\n";

0223 @patterns = <INFILE>;

0224 close(INFILE);

0225

0226 # Exit 1T user asks for position in file that exceeds the number of lines
0227 # in file

0228 if(($posOfLastPattern > S$#patterns+1l) || ($numOfPatterns==0)){

0229 print

0230 "\n"".

0231 " Zero patterns or not enough patterns in file".

0232 $camContentfile.""\n".

0233 "\n"";

0234 exit(-1);

0235 }

0236

0237 # Find length of longest pattern

0238 # Make array over length of patterns

0239 for($i=$posOfFirstPattern; $i<$posOfLastPattern; $i++){

0240 $len = length($patterns[$i])-1; # Minus one byte for \n

0241 push(@lengthOfPatterns, $len); # Make array over lengths of patterns
0242 # in LUTs

0243 $camSize += $len;

0244 if($longestPattern < $len){ # Longest pattern in hex

0245 $longestPattern = $len;

0246 3}

0247 3}

0248 $longestPattern *= 4; # Longest pattern in bin

0249 $totNumOfPatterns = $#patterns + 1;

0250 $camSize /= 2;

0251

0252 print

0253 "\n"".

0254 " Loading ".$numOfPatterns.' patterns (of ".$totNumOfPatterns.
0255 ") from "._$camContentfile."\n".

0256 " Startposition (starting at zero): ".$posOfFirstPattern.'"\n".
0257 "\n"".

0258 " Number of patterns loaded : ".$numOfPatterns.'"\n".

0259 " Longest pattern (bits) > ".$longestPattern.'\n".

0260 " Size of CAM (bytes) o ".$camSize."\n";

0261 }
0262

o263 elsiF(SARGV[O] eq "-c'){ # -c option

0264 1 F($#ARGV==2){

0265 $longestPattern=$ARGV[1];

0266 iT(1(($longestPattern % 4) == 0) || $longestPattern==0){

0267 print '"\n Width must be of 4x value of integer > O\n\n";
0268 exit(-1)

0269 }

0270 $numOfPatterns=$ARGV[2];

0271 for($i=0; $i<$numOfPatterns; $i++){

0272 push(@patterns, $longestPattern/4); # @patterns holds length in LUTs
0273

0274 @lengthOfPatterns = @patterns;

0275 print

0276 "\n"".

0277 " Words : "_$numOfPatterns.'\n".

0278 " Width(bits) o ".$longestPattern.'\n";
0279 }

0280 else{

0281 msg(Q);

82

0282 exit(-1);
0283 3}

0284 }

0285

o2ss €lsiF(SARGV[O] eq "-u™){ # -u option

0287 1 F($#ARGV>=1){

0288 shift;

0289 @patterns = @ARGV;

0290

0291 # Find length of longest pattern

0292 # Make array over length of patterns

0293 for($i=0; $i1 <= $#patterns; $i++){

0204 ifT(V(($patterns[$i] % 4)==0) || $patterns[$i]==0){

0295 print '"\n Width must be of 4x value of integer > O\n\n";
0296 exit(-1)

0297

0298 $len = $patterns[$i];

0299 push(@lengthOfPatterns, $len/4); # Make array over lengths of
0300 # patterns in LUTs

0301 if($longestPattern < $len){ # Longest pattern in bin

0302 $longestPattern = $len;

0303 3}

0304 3}

0305 print

0306 "\n".

0307 " Words : ".($#lengthOfPatterns + 1)."\n".
0308 " Longest pattern (bits) o ".$longestPattern.'\n";

0309

0310 }

0311 else {

0312 msg(Q);

0313 exit(-1);

0314 }

0315 }

0316

0317

0318

03190 # Various

0320 $totNumOFPatterns
0321 $numOfPatterns
0322 $numOFAddrBits
0323

0324 # Header

0325 @header =

$#patterns + 1;
$#lengthOfPatterns + 1;
FindNumOfAddrBits($numOfPatterns);

0326 (

0327 —-\n"",

0328 "—-— File -,

0329 "', # Filename goes into this line: $header[2]

0330 "-— Project: ".$prjName.'"\n",

0331 "—— Author : "_$author .'\n",

0332 —-\n"",

0333 "——- This file was created ".getDate()." by using a Perl-script, \'".
0334 $filename.""\'""\n"",

0335 "—-\n"",

0336 Y-— "_$prjName.” project files:\n",

0337 "—— Top level module: "_$prjFileCam_top.'"\n",

0338 Y- module: |-> ".$prjFileCamCells.""\n",
0339 Y- module: |--> ".$prjFileCamGeneric.'"\n",
0340 Y- module: |---> "_$prjFileCam_basic.'"\n",
0341 Y- module: |-> "_$prjFileCompare.'\n",

0342 - module: |-> "_$prjFileCounter."\n",

83

0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403

- module: |-> "_$prjFileDecode."\n",

- module: |-> "_$prjFileEncode.""\n",
Ve testbench: " _$prjFileTb.'\n",

Y- package: " _$prjFileComponents.’\n",
"—-\n"",

Il\nll

S L L L L L L
HH A R R R

#Ht #H#
it Create fTile "cam_top.vhd"” it
#Ht #Ht

S L L L L L L
HH A R R

open(prjFileCam_top, ">"_.$prjFileCam_top) or die
"Can"t open ".$prjFileCam_top.'"\n";

$header[2] = $prjFileCam_top."\n";

print prjFileCam_top @header;

print prjFileCam_top
“"library ieee, unisim;\n".
"use ieee.std logic _1164.all;\n".
"'use unisim.vcomponents.all;\n".
""'use work.cam_components.all;\n".
"\n"".
"entity cam_top is\n";

$entities{cam_top} =

L

" generic(\n",

" longestPattern : integer := "_$longestPattern.";\n",

" addrBits o integer := "_$numOfAddrBits.";\n",

" numOfPatterns : integer := ".$numOfPatterns.''\n",

N):\n",

" port(\n",

" clk : in std _logic;\n",

" rst : in std _logic;\n",

" -- Data to compare or to write\n",

" cam_data - in std_logic vector(longestPattern-1 downto 0);".
"\n"",

" -- Address when write ONLY\n",

" cam _wordaddr_in : in std _logic vector(addrBits-1 downto 0);\n",
" -- Match address\n',

" cam_wordaddr_out : out std_logic vector(addrBits-1 downto 0);\n",
" cam _write_rdy : out std_logic;\n",

" -— "1" starts a 16 clock cycle write\n",

" cam _write_en : in std _logic;\n",

" -- Enable to find a match, otherwise no change on match bus.\n",
" cam_match_en > in std_logic;\n",

' -- "1 if match found\n",

" cam_match : out std_logic\n",

N);\n”

1:

print prjFileCam_top @{$entities{cam_top}};
print prjFileCam_top

"end cam_top;\n".
"\n"".

84

0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464

"architecture cam_top of cam_top is\n".

' —-— Out of decoder. In to CAM\n™.

" —— Out of compare. In to CAM\n".

signal data_sig o

"std _logic vector(longestPattern/4 1 downto 0);\n"
-— Out of CAM. In to encoder\n

" —- Out of counter. In to decoder\n".
signal we_sig : std _logic;\n".
' —-— Out of counter. In to compare\n'.

"begin\n".
"\n"".

"cam_write_rdy <= "1" when cnt_sig=\""0000\" else "0";\n".

Il\nll-

counter_inst: counter\n'.

" port map(\n'.

write_en => cam write_en,\n".

" clk => clk,\n".

" rst = rst,\n".

" we => we_sig,\n"
" cnt => cnt_sig\n".
o) \nt.

"\n".

‘compare_inst: compare\n'.

generic map(\n".
longestPattern => longestPattern\n™.

"oO\nT.

port map(\n".

" addr => cam_data,\n".

cnt => cnt_sig,\n".

" data => data_sig\n".

o)\t

"\n".

"decode_inst: decode\n™.

" port map(\n'.

" we => we_sig,\n".

" addr => cam_wordaddr_in,\n".
" word_sel => word_sel _sig\n".

o) \nt.

Il\nll-
""encode_inst: encode\n'.
" port map(\n'.

" addr => cam_wordaddr_out,\n".
" match => cam_match,\n".

" match_bus => match_bus_sig\n".

o) \nt.

"\n".

“"cam_inst: cam_words\n".

' generic map(\n™.

" longestPattern => longestPattern,\n".
numOfPatterns => numOfPatterns\n™.

" oO\n".

" port map(\n".

" addr => cam_data,\n".
" data => data_sig,\n"
" clk => clk,\n".

" rst => rst,\n".

match_en => cam _match_en,\n"
word_sel => word_sel_sig,\n".

85

signal word_sel_sig : std_logic_vector(numOfPatterns-1 downto 0);\n".

signal match_bus sig : std_log|c_vector(numOfPatterns—l downto 0);\n".

signal cnt_sig : std_logic_vector(3 downto 0);\n".

0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525

match_bus => match_bus_sig\n'.
o) \nt.

Il\nll-

"end cam_top;\n";

close(prjFileCam_top);

R R R R R A A R T
et L L L e

HH #Ht
H# Create file "cam words.vhd" H#
Hit #Ht

R R R S R R A A T
et L L L e

open(prjFileCamCells, ">"_$prjFileCamCells) or die
"Can"t open "._$prjFileCamCells."\n";

$colslnArray = 16;
$header[2] = $prjFileCamCells."\n";

print prjFileCamCells @header;

print prjFileCamCells
“"library ieee;\n".
"use ieee.std logic _1164.all;\n".
"'use work.cam_components.all;\n".
"\n"".
"entity cam_words is\n';

$entities{cam words} =

L

" generic(\n",

" longestPattern : integer;\n",

" numOfPatterns : integer\n",

"o)\nT,

" port(\n",

" addr - in std_logic vector(longestPattern-1 downto 0);\n",
' -— Out of compare. In to CAM\n",

" data - in std _logic vector(longestPattern/4-1 downto 0);\n",
" clk : in std _logic;\n",

" rst > in std_logic;\n",

" -- Enable to find a match, otherwise no change on match bus\n",
" match_en : in std_logic;\n",

" -- Out of decoder. In to CAM\n",

" word_sel : in std _logic vector(numOfPatterns-1 downto 0);\n",
" -— Out of CAM. In to encoder\n",

" match_bus : out std _logic_vector(numOfPatterns-1 downto 0)\n",
"o)s\n”

1;

print prjFileCamCells @{$entities{cam words}};

print prjFileCamCells
"end cam_words;\n".
"\n".
"architecture cam words of cam words is\n".
" type num_of luts is array(0 to numOfPatterns-1) of integer;\n".
" constant luts : num of luts := (-- 1 LUT = 4 bits\n s
Make array of length of patterns
for($i=0; $i <= $numOfPatterns-1; $i++){
iT((($i % ($colslinArray)) == 0)&&!($i==0)){

86

0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586

print prjFileCamCells "\n ;
}

Tabulate columns

print prjFileCamCells
" " x (length($longestPattern)-length($lengthOfPatterns[$i])-1).
$lengthOfPatterns[$i];

if($i1 == ($numOfPatterns - 1)){
print prjFileCamCells ""\n):\n"";

}
else {
print prjFileCamCells ", ";
}
}
print prjFileCamCells
"begin\n".
"\n".
""cam_words: for i in numOfPatterns-1 downto O generate\n'.
begin\n.

cam_word_inst: cam_word\n".
generic map(\n".
" numOfLuts => luts(i)\n".
" \n".
port map(\n*.
" --— lowest index(bits) = highest index(bits) - 4*luts+1\n".
" addr => addr(longestPattern-1 downto .
"(longestPattern-1)-4*luts(i)+1),\n".
" -— lowest index(luts) = highest index(luts) - luts+1\n".
" data => data(longestPattern/4-1 downto *.
"(longestPattern/4-1)-luts(i)+1),\n".
write_en => word_sel(i),\n".
" clk => clk,\n".
rst => rst,\n".
match_en => match_en,\n".
" match_out => match_bus(i)\n".
' D:\n".
"end generate;\n".
"\n".
"end cam_words;\n";

close(prjFileCamCells);

HH AR R R R
T A T e T T T R e T

Hit #Hit
H# Create file "cam_word.vhd" H#
Hit Hit

HH A R R R
T T e T T T R S T T

open(prjFileCamGeneric, ">"_$prjFileCamGeneric) or die
"Can"t open "_$prjFileCamGeneric.'"\n";

$header[2] = $prjFileCamGeneric.'"\n";
print prjFileCamGeneric @header;
print prjFileCamGeneric

“"library ieee;\n".
"use ieee.std_logic_1164_all;\n".

87

0587 "'use work.cam_components.all;\n".
0588 "\n"".

0589 “"entity cam_word is\n'';

0590

oso1 $entities{cam_word} =

0592 [

0593 ' generic(\n",

0594 " numOfLuts : integer\n',

0595 ")s;\n",

0596 " port(\n",

0597 " addr > in std_logic_vector(numOfLuts*4-1 downto 0);\n",
0598 " -— Write one bit to X cam basic cells in parallell\n",

0599 " data - in std_logic vector(numOfLuts-1 downto 0);\n",
0600 " -— Write Enable during 16 clock cycles\n",

0601 " write_en : Iin std _logic;\n",

0602 " clk > in std_logic;\n",

0603 " rst > in std_logic;\n",

0604 " -— And gate should be disabled during write\n",

0605 " match_en - in std _logic;\n",

0606 " -— "1" is the DATA_IN matches the stored data\n",

0607 " match_out : out std_logic\n",

0608 '):\n"

0609 1;

os10 print prjFileCamGeneric @{$entities{cam _word}};
0611
os12 print prjFileCamGeneric

0613 "end cam_word;\n".

0614 "\n"".

0615 ""architecture cam word of cam_word is\n".

0616 " —-— (wires) carry in/out of MUXCY \n".

0617 ' signal match_in : std_logic_vector(numOfLuts downto 0);\n".
0618 "begin\n".

0619 "\n"".

0620 "match_in(numOfLuts) <= match_en;\n".

0621 "\n"".

0622 "'—— Make one cam-word\n™.

0623 ""-— Use X cam_basic components\n'.

0624 ""cam_basic_X: for i in numOfLuts-1 downto O generate\n™.
0625 "begin\n".

0626 " -- Instansiate cam_basic one by one\n".
0627 " cam_basic_inst: cam basic\n".

0628 " port map(\n".

0629 " data => data(i),\n".

0630 " match_in => match_in(i+1),\n".

0631 " -- start with most significant bit\n".
0632 " addr => addr((4*i1+3) downto (4*i)),\n".
0633 " write_en => write_en,\n".

0634 ' clk => clk,\n".

0635 " -— This wire goes to register\n'.

0636 " match_out => match_in(i)\n".

0637 b d:\n".

0638 "end generate;\n".

0639 "\n"".

0640 ""'—-— Register the result\n".

0641 "register_match_out: process(rst, clk)\n".
0642 begin\n.

0643 " if(rst = "07) then\n".

0644 " match_out <= "0";\n".

0645 " elsif rising_edge(clk) then\n".

0646 " match_out <= match_in(0);\n".

0647 " end if;\n".

88

0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708

end process;\n".
Il\nll-
"end cam_word;\n";

close(prjFileCamGeneric);

HHH R A A AR
R R R R R A A R T

Hit Hit
H# Create fTile "‘cam _basic.vhd" H#
Hit #Ht

HHH R A AR
R R R S R R A A T

open(prjFileCam_basic, ">"_$prjFileCam_basic) or die
"Can"t open "._$prjFileCam_basic."\n";

$header[2] = $prjFileCam basic."\n";

print prjFileCam_basic @header;

print prjFileCam_basic
“"library ieee, unisim;\n".
""use ieee.std logic _1164_all;\n".
""use unisim.vcomponents.all;\n".
"\n".
“entity cam_basic is\n';

$entities{cam_basic} =

L

" port(\n",

" data - in std_logic; -- Data to write (one bit at a time)\n",
" write_en :© in std_logic;\n",

' clk > in std_logic;\n",

" addr : in std _logic vector(3 downto 0);\n",

" match_in : in std _logic; -- Input to MUXCY (carry-in)\n",

" match_out : out std _logic —-— Output from MUXCY (carry-out)\n',

")s\n"

1:

print prjFileCam_basic @{$entities{cam basic}};

print prjFileCam_basic
"end cam_basic;\n".

"\n"".

""architecture cam _basic of cam basic is\n".
" signal s : std _logic; -- Select\n".

" signal gnd : std_logic;\n".

"begin\n".

"\n"".

gnd <= "0";\n".

"\n".

""—- Use one SRL16E to make a 4-bit cam\n'.
"sril6e_inst: srll6e\n’.
" port map(\n'.

" d => data,\n".

ce => write_en,\n".
" clk => clk,\n".

" a0 => addr(0),\n".
" al => addr(1),\n".
" a2 => addr(2),\n".
" a3 => addr(3),\n".
q => s\n".

89

0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769

"):\n".

"\n"".

""'-- Make wide and gate by using MUXCY\n'.
"muxcy_inst: muxcy\n".

" port map(\n".

" di => gnd, —-— Dataln\n".

" ci => match_in, -- Carryln \n".
" s => s, -- Select\n".

" 0 => match_out -- Output \n".
"):\n".

"\n"".
"end cam_basic;\n";

close(prjFileCam basic);

HHH R A A AR
HHH R A AR

#Ht #Ht
H Create file "compare.vhd" H#Hit
#t #i

HHH R A AR
R R R S R R A A T

open(prjFileCompare, ">"_$prjFileCompare) or die
"Can"t open "_.$prjFileCompare.'\n";

$header[2] = $prjFileCompare."\n";

print prjFileCompare @header;
print prjFileCompare
“library ieee;\n".
""use ieee.std logic _1164_all;\n".
Il\nll-
"entity compare is\n";

$entities{compare} =

" generic(\n",
longestPattern : integer\n",

"o)s\n",

" port(\n",

-- Longest pattern to be written\n",

" addr : in std logic_vector(longestPattern-1 downto 0);\n",

" —-— Output from 16 bit counter\n',

cnt : in std _logic_vector(3 downto 0);\n",

-- LUTs needed for longest pattern\n®,

data : out std logic_vector(longestPattern/4-1 downto 0)\n",
")s\n"
1;

print prjFileCompare @{$entities{compare}};

print prjFileCompare
"end compare;\n".
"\n".
""architecture compare of compare is\n".
" —— Output of xnor2\n".
signal bit xnor : std _logic vector(longestPattern-1 downto 0);\n".
"begin\n".
"\n".
""—— Compare bits to be written with the counter (xnor gates)\n".
'-— generate xnor2-gates for comparators\n™.

90

0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830

comparators: for j in O to longestPattern/4-1 generate\n™.
“begin\n.

' -- generate xnor2-gates 4 by 4\n".

Xnor2_inst: for i in O to 3 generate\n".

begin\n™.

" bit xnor(i+j*4) <= not (addr(i+j*4) xor cnt(i)); -- Xnor2 gates\n'.
" end generate;\n".

"end generate;\n".

"\n".

"'-— connect xnor2 to and4\n".

“"and_inst: for 1 in 0 to longestPattern/4-1 generate\n™.
"begin\n.

" data(i) <= bit _xnor(i*4) and -- and4-gates\n'.

" bit xnor(i*4+1) and\n".

" bit xnor(i*4+2) and\n".

" bit xnor(i*4+3);\n".

"end generate;\n".

"\n"".

"end compare;\n"';

close(prjFileCompare);

R R R R R R A A A T
et L L L e

H# Ht
Ht Create fTile "counter.vhd" Hit
#H# Ht

R R R R R A A R T
et L L L e

open(prjFileCounter, ">"_$prjFileCounter) or die
"Can"t open ".$prjFileCounter.'"\n";

$header[2] = $prjFileCounter.’\n";

print prjFileCounter @header;

print prjFileCounter
“"library ieee;\n".
"use ieee.std logic 1164.all;\n".
"use ieee.std logic unsigned.all;\n".
""use ieee.std_logic _arith.all;\n".
"\n"".
"entity counter is\n";

$entities{counter} =
L
" port(\n",
-- one high write _en starts 16 write cycles when going low\n",
write_en : in std logic;\n",
" clk : Iin std _logic;\n",
rst > in std_logic; \n",
" -— Write enable valid during 16 clock cycles\n",
we : out std_logic;\n",
-— Copy of counter value\n",
cnt : out std _logic_vector(3 downto 0)\n",
" y:\n"
1;
print prjFileCounter @{$entities{counter}};

print prjFileCounter
"end counter;\n".

91

0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891

Il\nll-
""architecture counter of counter is\n'".
" —- Count the 16 write clock cycles\n".

" signal count : std _logic_vector(3 downto 0);\n".

" signal term _cnt : std_logic;\n".

“begin\n.

"\n"".

""-— Generate a Write Enable for the decoder and counter data for .
""comparison\n''.

"write_cycle: process(rst, clk, count)\n".

“begin\n.

" 1f(rst = "0") then -— Asynchronous reset\n™.

" count <= (others => "0");\n".
elsif rising_edge(clk) then \n".

" if(write_en = "1") then --— Start counting down\n".
" count <= (others => "1");\n".

" else\n".

" if(term_cnt = "1%) then\n".

" count <= count - 1; -- Count 15 downto O\n".

" end if;\n".

" end 1f;\n".

" end if;\n".

cnt <= count;\n".
"end process;\n".
"\n".
"——- Terminal count generation: Prevent counter to wrap around\n'.
"term_cnt <= count(3) or count(2) or count(l) or count(0);\n".
"\n"".
""—-— Generate a 16 clock cycles enable signal\n".
"write_en_register: process(rst, clk)\n".
begin\n.
" if(rst = "0") then \n".
' we <= "0";\n".
elsif rising_edge(clk) then \n".
we <= write_en or term_cnt;\n".
" end if;\n".
"end process;\n".
"\n"".
"end counter;\n";

close(prjFileCounter);

R R R R R A A A T
et L L L e

H# Ht
Ht Create fTile "decode.vhd" Hit
#H# Ht

R R R R R R A A A T
et L L L e

open(prjFileDecode, ">"_$prjFileDecode) or die
"Can"t open ".$prjFileDecode.'"\n";

$header[2] = $prjFileDecode.'"\n";

print prjFileDecode @header;
print prjFileDecode
“"library ieee;\n".
"use ieee.std logic 1164.all;\n".
"\n"".
“entity decode is\n';

92

0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952

$entities{decode} =

" port(\n",
" -- WriteEnable\n",
we > in std_logic;\n",
-— Binary address to words\n",
" addr : in std_logic vector(".($numOfAddrBits-1)." downto 0);\n",
-- Select one word\n",
word_sel : out std_logic_vector(*.($numOfPatterns-1)." downto 0)\n",
" y:\n"
1:
print prjFileDecode @{$entities{decode}};

print prjFileDecode
"end decode;\n".
"\n"".
""architecture decode of decode is\n".
"begin\n".
"\n".
""—- Create write enable signal\n'.
""decode: process(addr, we)\n".
"begin\n".
" word _sel <= (others => "0");\n".
" case addr is\n";

for($i=0; S$i<=$numOfPatterns-1; $i++){
print prjFileDecode
" when \"""_dec2bin($i, $numOfAddrBits)."\" => word_sel (.
" " x (length($numOfPatterns-1) - length($i)). # tabulate numbers
$i.") <= we;\n";

}

print prjFileDecode
" when others => word_sel <= (others => "0");\n".
end case;\n".
"end process;\n".
"\n"".
"end decode;";

close(prjFileDecode);

R R R R R A A A T
et L L L e

H# Ht
Ht Create file "encode.vhd" Hit
#H# Ht

R R R R R R A A A T
et L L L e

open(prjFileEncode, ">"_$prjFileEncode) or die
"Can"t open ".$prjFileEncode.'"\n";

$header[2] = $prjFileEncode.'"\n";

print prjFileEncode @header;
print prjFileEncode
“"library ieee;\n".
"use ieee.std logic 1164.all;\n".
"\n"".
“entity encode is\n';

93

0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

$entities{encode} =

" port(\n",

" -- "1" if match is found\n",

" match : out std_logic;\n",

" -- Match address\n',

" addr : out std_logic vector(".($numOfAddrBits-1)." downto 0);\n",

-- match_bus from CAM-words\n',
match_bus : in std_logic_vector(.($numOfPatterns-1)." downto 0)\n*,
12);\nll
I ER o
print prjFileEncode @{$entities{encode}};

print prjFileEncode
"end encode;\n".
"\n"".
"architecture encode of encode is\n".
"begin\n".
"\n".
"generate_address: process(match_bus)\n'.
"begin\n".
' case match_bus is\n";

for($i=0; S$i<=$numOfPatterns-1; $i++){
print prjFileEncode
" when \'""".onehot($numOfPatterns, $i).
"\"" => addr <= \""'_.dec2bin($i, $numOfAddrBits).""\"";\n";

}

print prjFileEncode
" when others => addr <= (others => "0");\n".
" end case;\n".
"end process;\n".
"\n"".
"-- Generate the match signal 1If one or more match(es) is/are found\n™.
"match <= "0 when match_bus =\n".
"ONTTUT0" x $numOfPatterns.\'"\n".
" else "1";\n".
"\n"".
"end encode;\n"';

close(prjFileEncode);

HH AR R R R
T A T e T T T R e T

HH# T
Hit Create fTile 'components.vhd" #t
Ht Hit

HH A R R R
T T e T T T R S T T

open(prjFileComponents, ">"_$prjFileComponents) or die
"Can"t open "_$prjFileComponents.'\n";

$header[2] = $prjFileComponents.'\n";
print prjFileComponents @header;
print prjFileComponents

“"library ieee;\n".
"use ieee.std_logic_1164_all;\n".

94

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

"\n"".
""package cam_components is\n".
Il\nll;

for $key(keys %entities){
print prjFileComponents "component ".$key.'
print prjFileComponents @{$entities{$key}};
print prjFileComponents "end component;\n\n';

is\n"';

}

print prjFileComponents "end cam_components;\n";
close(prjFileComponents);

HH A R R
T A T e T A R B i T

#H# #Hit
H# Create file "tb_cam top" H#
#H ##

HH A R R
T A T e T T A R B i

open(prjFileTb, ">"_$prjFileTb) or die
"Can"t open ".$prjFileTb."\n";

Estimate of time needed for simulation
$tb_clkCycle 10; # 10ns => 100MHz
$tb_rstAndinit 3*$tb_clkCycle;

$th_write $numOfPatterns * $tb_clkCycle * 16; # 16 cycles in each write
$tb_matchBefore 2*$tb_clkCycle;
$tb_match $numOfPatterns*$tb_clkCycle;

$tb_matchAfter 2*$tb_clkCycle;

$tb_total = $tb_rstAndInit+$tb_write+$tb_matchBefore+$tb_match+$tb_matchAfter;
Pattern not in CAM

$tb_errorPattern = "B" x ($longestPattern/4);

Used to write array in testbench

$tb_pattern ="

$tb_patternZeroes = "'';

Write correct filename to header

$header[2] = $prjFileTb."\n";

print prjFileTb @header;
print prjFileTb
"—-\n".
""——- Behavioral simulation at 10 ns clock cycles.\n".
-- 2 clock cycles delay after match enable goes high\n™.

"—— \n";

printfF(prjFileTb "-- reset:%26s ns\n", $tb rstAndInit);

printf(prjFileTb "-- write: 16*160ns = %10s ns\n", $tb_write);

printf(prjFileTb "-- matching: %5s ns Before match\n",
$tb_matchBefore);

printf(prjFileTbh "-- %5s*10ns = %10s ns Match status\n",
$numOfPatterns, $tb_match);

printF(prjFileTbh "-- %5s ns Get last 2 matches\n",
$tb_matchAfter);

print prjFileTb "-- \n";

printf(prjFileTb "-- Sum:%28s ns\n', $tb total);

print prjFileTb
“—-\n".

95

1075 "\n"".

1076 “library ieee;\n".

1077 ""use ieee.std logic _1164_all;\n".

1078 "use ieee.std logic arith.all;\n".

1079 ""use work.cam_components.all;\n".

1080 "\n"".

1081 "entity testbench is\n™.

1082 " generic(\n".

1083 " longestPattern : integer := "_$longestPattern.";\n".

1084 " addrBits o integer := "_$numOfAddrBits.";\n".

1085 " numOfPatterns : integer := ".$numOfPatterns.'\n".

1086 b d:\n".

1087 "end testbench;\n".

1088 "\n"".

1089 "architecture testbench of testbench is\n".

1090 " signal cam_data \n"'.

1091 " std_logic_vector(longestPattern-1 downto 0) := ".

1092 "(others => "0");\n".

1093 " signal cam_data reg \n''.

1094 " std_logic_vector(longestPattern-1 downto 0) := ".

1095 "(others => "0");\n".

1096 " signal cam_wordaddr_in \n"'.

1097 " std _logic_vector(addrBits-1 downto 0) =

1098 "(others => "0");\n".

1099 " signal cam_wordaddr_in_reg \n''.

1100 " std_logic_vector(addrBits-1 downto 0) =

1101 "(others => "0");\n".

1102 " signal cam_write_rdy \n".

1103 " std_logic = "0";\n".
1104 " signal cam _write_en \n''.

1105 " std_logic = "0";\n".
1106 " signal clk \n".

1107 " std_logic = "0";\n".
1108 " signal rst \n''.

1109 " std_logic 1= "0";\n".
1110 " signal cam_match_en \n'.

1111 " std_logic = "0";\n".
1112 " signal cam_match_en_reg \n".

1113 " std_logic = "0";\n".
1114 " signal cam_wordaddr_out \n''.

1115 " std_logic_vector(addrBits-1 downto 0) =

1116 "(others => "0");\n".

1117 " signal cam_match \n".

1118 " std_logic = "0";\n".
1119 " constant half_period \n''.

1120 " time = 5 ns;\n".
1121 "\n"".

1122 ' -- Bitvectors are set to equal size to make the testbench easier to ".
1123 “read.\n".

1124 " —-— In hardware the \"_00...\"-part may be omitted\n".

1125 " type pattern_array is\n'.

1126 " array(0 to numOfPatterns-1) of .

1127 "bit_vector (longestPattern-1 downto 0);\n".

1128 ' constant pattern : pattern_array := (-- Content of CAM\n";

1129

1130 # Write test-patterns

us1 # End patterns that are shorter than the longest pattern with "_00..."
1132

1133 1 F($posOfLastPattern==0){ # -c or -u switch has been used

1134 $posOfLastPattern = $#patterns+1;

1135 }

96

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

for($i = $posOfFirstPattern; $i < $posOfLastPattern; $i++){

}

$tb_pattern = $patterns[$i];
$tb_pattern =~ s/\n//;
$tb_patternZeroes = ""';
if(length($tb_pattern) < $longestPattern/4){
$tb_patternZeroes = "_"_."0" x ($longestPattern/4 - length($tb_pattern));
}

print prjFileTb ™ x\'""_$th_pattern.$tb_patternZeroes."\"";
if($i < $posOfLastPattern-1){

print prjFileTb *,";
}

print prjFileTb '"\n";

print prjFileTb

");\n".

"\n"".

" —-— A (userdefined) pattern not to be found in CAM\n".

" constant error_pattern : bit vector(longestPattern-1 downto 0) :=\n".
" xX\""_$tb_errorPattern."\"";\n".

"begin\n".

"\n"".

"uut: cam_top port map(\n".

" cam_data => cam _data reg,\n".

' cam_wordaddr_in => cam_wordaddr_in_reg,\n".
" cam_write_en => cam_write_en,\n".

" cam_write_rdy => cam_write_rdy,\n".

" oclk => clk,\n".

" orst => rst,\n".

' cam_match_en => cam_match_en_reg,\n".
' cam_wordaddr_out => cam_wordaddr_out,\n".
' cam_match => cam_match\n".
o)\t

"\n".

"clk <= not(clk) after half period; \n".
"\n"".

"tb: process\n'.

"begin\n".

"\n".

" orst <= "07; wait for 2*half _period;\n".
" orst <= "1%; wait for 2*half_period;\n".
"\n"".
" —--— Syncronize signals to rising edge\n".
if not rising_edge(clk) then\n".
wait for half_period;\n™".
" end if;\n".
"\n"".
" —- write new data to CAM. Write to all CAM-locations\n".
" For 1 In 0 to numOfPatterns-1 loop\n".
" -— example: "1" <= \"01\'"\n".
cam_wordaddr_in <= conv_std logic_vector(i,addrBits);\n".
" cam_data <= to_stdLogicVector(pattern(i));\n".
" if(cam_write _rdy="0") then\n".
walt until cam_write rdy = "1";\n".

" end if;\n".
" -- Start counter\n'.
" cam_write_en <= "1"; wait for 2*half_period;\n".

-— 15 clock-cycles left of writecycle\n".
cam write_en <= "0"; wait for 15*2*half _period;\n".
end loop;\n™.

97

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257

"\n"".
" —-— \"read\" CAM: verify that data has been written to CAM\n™".
' cam_match_en <= "1";\n".
"\n"".
" For 1 In 0 to numOfPatterns-1 loop\n".
" if(i=numOfPatterns-2) then\n™".
cam_data <= to_stdlogicvector(error_pattern); -- Make mismatch\n™.
else\n".
cam_data <= to_stdlogicvector(pattern(i));\n".
" end if;\n".
wait for 2*half _period;\n".
end loop;\n™.

"\n".

" cam_match_en <= "0";\n".

"\n".

" wait; -- Prevent simulation to wrap around\n'.
end process;\n".

"\n".

""—-— Registered 1/0\n".
"1o_register: process(rst, clk)\n".

begin\n.

" if(rst = "07) then\n".

" cam_data reg <= (others => "0");\n".
" cam_wordaddr_in_reg <= (others => "0");\n".
" cam_match_en_reg <= "0";\n".

" else\n".

" if rising_edge(clk) then\n".

" cam_data reg <= cam_data;\n".

" cam_wordaddr_in_reg <= cam wordaddr_in;\n".
" cam_match_en_reg <= cam_match_en;\n".
" end if;\n".

" end if;\n".

"end process;\n".

"\n".

"end testbench;\n";
close(prjFileTb);

L L L L L L D
HH A R R R

#Ht #H#
H#Hi Warning: User defined fdo-file Tt
#Ht #Ht

S L L L L L L
HH AR R R R

Create .fdo-file for easy startup in ModelSim
open(fdoFile, ">"_.$prjFileFdo) or die
"Can"t open ".$prjFileFdo.""\n";

$tb_zoom_from = $tb_total-($numOfPatterns*10)-(24*10);
print fdoFile

"# User defined fdo-file.\n".
"# Created " .getDate()."\n".

"vlib " _$sim_path."\n".

"vcom -work ".$sim path." -nologo -93 -explicit ./counter.vhd \n".
"vcom -work " .$sim_path." -nologo -93 -explicit ./compare.vhd \n".
"vcom -work ''_.$sim_path.'" -nologo -93 -explicit ./decode.vhd \n"'.
"vcom -work "'.$sim_path." -nologo -93 -explicit ./encode.vhd \n".
"“vcom -work ".$sim_path." -nologo -93 -explicit ./cam _basic.vhd \n".

98

1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318

"vcom -work ".$sim_path." -nologo -93 -explicit ./components.vhd\n".

"vcom -work *.$sim_path." -nologo -93 -explicit ./cam word.vhd \n".
"vcom -work ".$sim_path." -nologo -93 -explicit ./cam words.vhd \n".
"'vcom -work "'_$sim_path.' -nologo -93 -explicit ./cam_top.vhd \n".
"vcom -work "_.$sim_path." -nologo -93 -explicit ./tb_cam_top.vhd\n".
"vsim -t 1lps -lib ".$sim_path." testbench \n".

"view wave\n™.
"onerror {resume}\n".
"quietly WaveActivateNextPane {} O\n".

"add wave -noupdate -format Logic /testbench/rst \n".
"add wave -noupdate -format Logic /testbench/clk \n".
"*add wave -noupdate -format Literal -radix ascii ™.

' /testbench/cam_data \n".

"add wave -noupdate -format Literal /testbench/cam_wordaddr_in \n".
"add wave -noupdate -format Logic /testbench/cam_write rdy \n".

"add wave -noupdate -format Logic /testbench/cam_write_en \n".
"add wave -noupdate -format Logic /testbench/cam_match_en \n".
"add wave -noupdate -format Literal /testbench/cam_wordaddr_out\n'.
"add wave -noupdate -format Logic /testbench/cam_match \n".

"TreeUpdate [SetDefaultTree]\n".
"WaveRestoreCursors {0 ps}\n™.
"WaveRestoreZoom {".$tb_zoom from." ns} {".$tb_total."” ns}\n".
"configure wave -namecolwidth 160\n".
"configure wave -valuecolwidth 130\n".
"configure wave -justifyvalue left\n".
configure wave -signalnamewidth 1\n™".
"configure wave -snapdistance 10\n".
"configure wave -datasetprefix O\n".
"configure wave -rowmargin 4\n'.
"configure wave -childrowmargin 2\n".
"\n"".

“run ".$tb_total.'"ns";

close(fdoFile);

HHH R A A AR
R R R R R A A R T

#H# Ht
HH# Print Hit
H# Ht

HHH R A A AR
R R R R R A A A T

print
" Address bits " .$numOfAddrBits.""\n".
"\n"".
" Wrote Top level module: "_.$prjFileCam_top.'"\n".
" Wrote module: |-> "_$prjFileCamCells." (DO\N".
" Wrote module: |--> "_.$prjFileCamGeneric.")\n".
" Wrote module: |---> "_.$prjFileCam_basic." (2)\n".
" Wrote module: |-> ".$prjFileCompare.")\n".
" Wrote module: |-> ".$prjFileCounter.”)\n".
" Wrote module: |-> ".$prjFileDecode.'\n".
" Wrote module: |-> "_$prjFileEncode.'"\n".
" Wrote package: " .$prjFileComponents.'\n".
" Wrote testbench: "_$prjFileTb."\n".
" Wrote fdo-file: "_$prjFileFdo."\n".
"\n"".
" 1) Contains array over length of words\n".
" 2) Files need to be created only once\n".
"\n"";

99

1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336

HHH R A A AR
R R R R R A A R T

H#
HH
H#H
H#H
H#
H#
HH
H#H
H#H
H#
H#
HH
H#

A #
#
#
A St
#
o HEHR
#
H #
o HHHH

HHHHE #
#
#
A HHH H#
wHH#E H#HE O#H OH#H HH
#
#
#O#H HH
HHHHE # H o OHHH H#

H#
HH
H#
H#
H#
H#
HH
H#
H#
H#
H#
HH
H#

HHH R A AR
R R A R R A T

cam_top.vhd

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040

File : cam_top.vhd
Project: cam_srll6e
Author : Geir Nilsen { geirni@ifi.uio.no }

cam_srll16e project files:
Top level module: cam_top.vhd

module: |-> cam_words.vhd
module: |--> cam word.vhd
module: |---> cam_basic.vhd
module: |-> compare.vhd
module: |-> counter.vhd
module: |-> decode.vhd
module: |-> encode.vhd

testbench: tb_cam_top.vhd
package: components.vhd

library ieee, unisim;

use ieee.std logic 1164.all;
use unisim.vcomponents.all;
use work.cam_components.all;

entity cam_top is

generic(
longestPattern : integer := 256;
addrBits > integer := 5;
numOfPatterns : integer := 32
)

port
clk : In std_logic;
rst > in std_logic;

-- Data to compare or to write

This file was created Aug 4 2004 by using a Perl-script, "cam_vhdl._pl"

cam_data - in std_logic vector(longestPattern-1 downto 0);

-- Address when write ONLY

cam_wordaddr_in : in std_logic_vector(addrBits-1 downto 0);

-- Match address

cam_wordaddr_out : out std_logic_vector(addrBits-1 downto 0);

100

041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101

cam_write_rdy : out std_logic;

-— "1" starts a 16 clock cycle write

cam_write_en - in std_logic;
-— Enable to find a match, otherwise no change on match bus.
cam_match_en : Iin std _logic;
-— "1" if match found
cam_match : out std_logic
)
end cam_top;
architecture cam_top of cam _top is
-— Out of decoder. In to CAM
signal word_sel_sig : std_logic_vector(numOfPatterns-1 downto 0);
-— Out of compare. In to CAM
signal data_sig : std_logic_vector(longestPattern/4-1 downto 0);
-— Out of CAM. In to encoder
signal match_bus _sig : std_logic_vector(numOfPatterns-1 downto 0);

-— Out of counter. In to decoder
signal we_sig : std _logic;
-— Out of counter. In to compare

signal cnt_sig : std_logic_vector(3 downto 0);

cam write_rdy <= "1" when cnt_sig="0000" else "0%;

counter_inst: counter

port map(
write_en => cam _write_en,
clk => clk,
rst = rst,
we => we_sig,
cnt => cnt_sig
):

compare_inst: compare
generic map(
longestPattern => longestPattern

port map(
addr => cam data,
cnt => cnt_sig,
data => data_sig

):
decode_inst: decode
port map(
we => we_sidg,
addr => cam_wordaddr_in,
word_sel => word_sel_sig
)
encode_inst: encode
port map(
addr => cam_wordaddr_out,
match => cam_match,
match_bus => match_bus_sig
):

cam_inst: cam_words
generic map(
longestPattern => longestPattern

101

102 numOfPatterns => numOfPatterns
103

104 port map(

105 addr => cam_data,

106 data => data_sig,

107 clk => clk,

108 rst => rst,

109 match_en => cam_match_en,
110 word_sel => word_sel_sig,
111 match_bus => match_bus_sig
112);

113
114 end cam_top;

cam_words.vhd

01 —-

2 —— File - cam_words.vhd
03 -— Project: cam _srll6e
04 —— Author : Geir Nilsen { geirni@ifi.uio.no }

05 ——
o6 —— This File was created Aug 4 2004 by using a Perl-script, "cam_vhdl._pl"

07 ——

os —— cam_srll6e project files:

o9 -— Top level module: cam_top.vhd

10 —- module: |-> cam_words.vhd
11 - module: |--> cam_word.vhd
12 —- module: |---> cam_basic.vhd
13 —— module: |-> compare.vhd
14 —— module: |-> counter.vhd
15 —— module: |-> decode.vhd

16 —— module: |-> encode.vhd

17 —- testbench: tb_cam top.vhd

18 —— package: components.vhd

19 ——

20

21 library ieee;

22 use ieee.std logic 1164.all;
23 use work.cam_components.all;

25 entity cam words is
26 generic(

27 longestPattern : integer;

28 numOfPatterns : integer

29);

30 port(

31 addr - in std_logic vector(longestPattern-1 downto 0);
32 -— Out of compare. In to CAM

33 data : In std_logic_vector(longestPattern/4-1 downto 0);
34 clk > in std_logic;

35 rst > in std_logic;

36 -- Enable to find a match, otherwise no change on match bus
37 match_en : in std _logic;

38 -— Out of decoder. In to CAM

39 word_sel : in std_logic vector(numOfPatterns-1 downto 0);
40 -— Out of CAM. In to encoder

a1 match_bus : out std_logic_vector(numOfPatterns-1 downto 0)
2);

43 end cam_words;

45 architecture cam_words of cam _words is

102

71
72

type num_of luts is array(0 to numOfPatterns-1) of integer;
constant luts - num of luts := (-- 1 LUT = 4 bits
44, 14, 28, 12, 60, 30, 38, 42, 10, 24, 64, 14, 8, 16, 36, 24,
20, 12, 24, 28, 26, 36, 24, 24, 26, 34, 40, 24, 24, 22, 16, 14
)
begin

cam_words: for i in numOfPatterns-1 downto O generate
begin
cam_word_inst: cam_word
generic map(
numOfLuts => luts(i)

port map(
-- lowest index(bits) = highest index(bits) - 4*luts+1l
addr => addr(longestPattern-1 downto (longestPattern-1)-4*luts(i)+1),
-— lowest index(luts) = highest index(luts) - luts+l
data => data(longestPattern/4-1 downto (longestPattern/4-1)-luts(i)+1),
write_en => word_sel (i),
clk = clk,
rst => rst,
match_en => match_en,
match_out => match_bus(i)
);

end generate;

end cam_words;

cam_word.vhd

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

-- File > cam_word.vhd
-- Project: cam_srll6e
-— Author : Geir Nilsen { geirni@ifi.uio.no }

-— This file was created Aug 4 2004 by using a Perl-script, "cam_vhdl._pl"

-— cam_srll1l6e project files:
-— Top level module: cam_top.vhd

- module: |-> cam_words.vhd
-— module: |--> cam_word.vhd
- module: |---> cam basic.vhd
- module: |-> compare.vhd

- module: |-> counter.vhd

-— module: |-> decode.vhd

-— module: |-> encode.vhd

- testbench: tb_cam_top.vhd
- package: components.vhd

library ieee;
use ieee.std_logic_1164._all;
use work.cam components.all;

entity cam_word is

generic(
numOfLuts : integer
)
port(
addr > in std_logic_vector(numOfLuts*4-1 downto 0);

-— Write one bit to X cam basic cells in parallell

103

32 data > in std_logic_vector(numOfLuts-1 downto 0);

33 -— Write Enable during 16 clock cycles

34 write_en - in std_logic;

35 clk - in std_logic;

36 rst : In std _logic;

37 -— And gate should be disabled during write
38 match_en > in std_logic;

39 -- "1" is the DATA IN matches the stored data
40 match_out : out std logic

a1);

42 end cam _word;

43

44 architecture cam word of cam_word is

s —- (wires) carry in/out of MUXCY

46 signal match_in : std_logic_vector(numOfLuts downto 0);
47 begin

48

a9 match_in(numOfLuts) <= match_en;

50

51 —— Make one cam-word

s2 —— Use X cam_basic components

s3 cam_basic_X: for i in numOfLuts-1 downto O generate
sa begin

s5s —- Instansiate cam_basic one by one

s6 cam_basic_inst: cam basic

57 port map(

58 data => data(i),

59 match_in => match_in(i+l),

60 -— start with most significant bit
61 addr => addr((4*i+3) downto (4*1)),
62 write_en => write _en,

63 clk = clk,

64 -- This wire goes to register

65 match_out => match_in(i)

66);

67 end generate;

68

69 —— Register the result

70 register_match_out: process(rst, clk)

71 begin

72 if(rst = "0") then

73 match_out <= "0";

74 elsif rising_edge(clk) then

75 match_out <= match_in(0);

76 end if;

77 end process;
78

79 end cam_word;

cam_basic.vhd

01 ——

2 -— File : cam_basic.vhd

03 -— Project: cam _srll6e

o4 —— Author : Geir Nilsen { geirni@ifi.uio.no }

05 ——

o6 —— This File was created Aug 4 2004 by using a Perl-script, "cam_vhdl._pl"

07 ——

os —— cam_srll6e project files:
oo —— Top level module: cam_top.vhd
10 —- module: |-> cam_words.vhd

104

module: |--> cam_word.vhd

module: |---> cam_basic.vhd
module: |-> compare.vhd
module: |-> counter.vhd
module: |-> decode.vhd
module: |-> encode.vhd

testbench: tb_cam top.vhd

package: components.vhd

21 library ieee, unisim;
22 use ieee.std _logic_1164.all;
23 use unisim.vcomponents.all;

25 entity cam basic is

26 port(

27 data > in std_logic; -— Data to write (one bit at a time)
28 write_en :© in std_logic;

29 clk - in std_logic;

30 addr : In std_logic vector(3 downto 0);

31 match_in : in std_logic; --— Input to MUXCY (carry-in)

32 match_out : out std logic —-— Output from MUXCY (carry-out)

33);

s34 end cam_basic;

36 architecture cam_basic of cam_basic is

37 signha

I s

> std_logic; -- Select

ss signal gnd : std _logic;

39 begin
a1 gnd <=

43 —— Use

0"

one

SRL16E to make a 4-bit cam

44 srll6e_inst: srll6e
45 port map(

46 d

47 ce
48 clk
49 a0
50 al
51 a2
52 a3
53 q

54);

=>
=>
=>
=>
=>
=>
=>
=>

data,
write_en,
clk,
addr(0),
addr(1),
addr(2),
addr(3),
S

s6 —— Make wide and gate by using MUXCY
57 MUXCY_Inst: muxcy

58 port
59 di
60 ci
61 S
62 (0]
63);

map
=>
=>
=>
=>

(

gnd, --— Dataln
match_in, -- Carryln
s, -- Select
match_out -- Output

65 end cam_basic;

compare.vhd

01 ——
02 —— File

> compare.vhd

03 —— Project: cam_srll6e

105

04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

-— Author : Geir Nilsen { geirni@ifi.uio.no }

-— This file was created Aug 4 2004 by using a Perl-script, "cam_vhdl.

-— cam_srll6e project files:

-— Top level module: cam_top.vhd

-— module: |-> cam_words.vhd
- module: |--> cam word.vhd
- module: |---> cam basic.vhd
- module: |-> compare.vhd

-— module: |-> counter.vhd

-— module: |-> decode.vhd

- module: |-> encode.vhd

- testbench: tb_cam_top.vhd
- package: components.vhd

library ieee;
use ieee.std logic 1164.all;

entity compare is
generic(
longestPattern : integer
E
port(

-- Longest pattern to be written

addr : in std logic_vector(longestPattern-1 downto 0);
-— Output from 16 bit counter

cnt : in std logic_vector(3 downto 0);
-- LUTs needed for longest pattern

data : out std_logic_vector(longestPattern/4-1 downto 0)

);

end compare;

architecture compare of compare is

-— Output of xnor2

signal bit xnor : std _logic vector(longestPattern-1 downto 0);

begin

-— Compare bits to be written with the counter (Xnor gates)

-- generate xnor2-gates for comparators

comparators: for j in 0 to longestPattern/4-1 generate

begin
-— generate xnor2-gates 4 by 4
Xnor2_inst: for i1 in O to 3 generate
begin

bit_xnor(i+j*4) <= not (addr(i+j*4) xor cnt(i));

end generate;
end generate;

-- connect xnor2 to and4

and_inst: for i in 0 to longestPattern/4-1 generate

begin
data(i) <= bit xnor(i*4) and
bit xnor(i*4+1) and
bit xnor(i*4+2) and
bit_xnor(i*4+3);
end generate;

end compare;

-- and4-gates

106

-— Xnor2 gates

counter.vhd

01 —-

2 —— File > counter.vhd
03 —— Project: cam_srll6e
04 —— Author : Geir Nilsen { geirni@ifi.uio.no }

05 ——
o6 —— This File was created Aug 4 2004 by using a Perl-script, "cam_vhdl._pl"

o7 ——

s —— cam_srll6e project files:

o9 -— Top level module: cam_top.vhd

10 —- module: |-> cam_words.vhd
11 - module: |--> cam_word.vhd
12 —-— module: |---> cam_basic.vhd
13 —— module: |-> compare.vhd
14 —— module: |-> counter.vhd
15 —— module: |-> decode.vhd

16 —— module: |-> encode.vhd

17 —— testbench: tb_cam top.vhd

18 —— package: components.vhd

19 ——

20

21 library ieee;

22 use ieee.std logic 1164.all;

23 use ieee.std _logic unsigned.all;
24 use ieee.std logic arith.all;

25

26 entity counter is

27 port(

28 -- one high write_en starts 16 write cycles when going low
29 write_en : in std logic;

30 clk > in std_logic;

31 rst - in std_logic;

32 -- Write enable valid during 16 clock cycles

33 we : out std_logic;

34 -— Copy of counter value

35 cnt : out std_logic vector(3 downto 0)

36);

37 end counter;
38
39 architecture counter of counter is

40 -— Count the 16 write clock cycles

s signal count : std _logic_vector(3 downto 0);

42 signal term_cnt : std logic;

43 begin

44

45 —-- Generate a Write Enable for the decoder and counter data for comparison
46 write_cycle: process(rst, clk, count)

47 begin

48 if(rst = "0") then -— Asynchronous reset

49 count <= (others => "0%);

so elsif rising_edge(clk) then

51 if(write_en = "1%) then -- Start counting down
52 count <= (others => "1%);

53 else

54 if(term cnt = "1") then

55 count <= count - 1; -- Count 15 downto O

56 end if;

57 end if;

58 end if;
59 cnt <= count;

107

60 end process;

61

62 —— Terminal count generation: Prevent counter to wrap around
63 term_cnt <= count(3) or count(2) or count(l) or count(0);

64

s —— Generate a 16 clock cycles enable signal
66 Write_en_register: process(rst, clk)

67 begin

68 if(rst = "0") then

69 we <= "0°;

7o elsif rising_edge(clk) then

7 we <= write_en or term_cnt;

72 end if;

73 end process;
74

75 end counter;

decode.vhd

01 ——

02 —— File = decode.vhd

03 —— Project: cam_srll6e

oa —— Author : Geir Nilsen { geirni@ifi.uio.no }

05 ——
o6 —— This file was created Aug 4 2004 by using a Perl-script, "cam_vhdl.pl"
07 —-—

s —— cam_srll6e project files:

o9 —— Top level module: cam_top.vhd

10 —- module: |-> cam_words.vhd
1 —- module: |--> cam_word.vhd
12 —- module: |---> cam_basic.vhd
13 —— module: |-> compare.vhd
14 —— module: |-> counter.vhd
15 —— module: |-> decode.vhd

16 —— module: |-> encode.vhd

17 —— testbench: tb_cam top.vhd

18 —— package: components.vhd

19 ——

20

21 library ieee;

22 use ieee.std _logic_1164.all;
23

24 entity decode is

25 port(

26 -- WriteEnable

27 we > in std_logic;

28 -- Binary address to words

29 addr : Iin std_logic vector(4 downto 0);
30 -- Select one word

31 word_sel : out std logic_vector(31 downto 0)
32);

33 end decode;
34
35 architecture decode of decode is

s begin

37

s —-— Create write enable signal
39 decode: process(addr, we)

40 begin

21 word_sel <= (others => "0%);
42 case addr is

108

43 when "*00000" => word_sel(0) <= we;

44 when ""00001" => word_sel(1) <= we;
45 when 00010 => word_sel(2) <= we;
46 when "00011" => word_sel(3) <= we;
47 when "00100" => word_sel(4) <= we;
48 when ""00101" => word_sel(5) <= we;
49 when ""00110" => word_sel(6) <= we;
50 when "00111" => word_sel(7) <= we;
51 when "01000" => word_sel(8) <= we;
52 when ""01001" => word_sel(9) <= we;
53 when "'01010" => word_sel (10) <= we;
54 when ""01011" => word_sel(11) <= we;
55 when 01100 => word_sel(12) <= we;
56 when "01101" => word_sel(13) <= we;
57 when "01110" => word_sel(14) <= we;
58 when "01111" => word_sel(15) <= we;
59 when 10000 => word_sel(16) <= we;
60 when 10001 => word_sel(17) <= we;
61 when "10010" => word_sel(18) <= we;
62 when "10011" => word_sel(19) <= we;
63 when "*10100" => word_sel(20) <= we;
64 when "10101" => word_sel (21) <= we;
65 when "10110" => word_sel (22) <= we;
66 when "10111" => word_sel(23) <= we;
67 when ""11000" => word_sel(24) <= we;
68 when "*11001" => word_sel(25) <= we;
69 when "11010" => word_sel(26) <= we;
70 when "11011" => word_sel (27) <= we;
7 when "11100" => word_sel(28) <= we;
72 when "11101" => word_sel(29) <= we;
73 when "11110" => word_sel(30) <= we;
74 when "11111" => word_sel(31) <= we;
75 when others => word_sel <= (others => "0%);

76 end case;
77 end process;
78

79 end decode;

encode.vhd

o1 ——

2 —— File > encode.vhd

03 —— Project: cam_srll6e

04 —— Author : Geir Nilsen { geirni@ifi.uio.no }

05 ——
o6 —— This File was created Aug 4 2004 by using a Perl-script, "cam_vhdl._pl"

07 —-

s —— cam_srll6e project files:

o9 -— Top level module: cam_top.vhd

10 —- module: |-> cam_words.vhd
11 —- module: |--> cam_word.vhd
12 —-— module: |---> cam_basic.vhd
13 —— module: |-> compare.vhd
14 —— module: |-> counter.vhd
15 —— module: |-> decode.vhd

16 —— module: |-> encode.vhd

17 —- testbench: tb_cam top.vhd

18 —— package: components.vhd

19 ——
20
21 library ieee;

109

22 use ieee.std _logic_1164.all;
23
24 entity encode is

25 port(

26 -- "1° 1f match is found

27 match : out std_logic;

28 -- Match address

29 addr : out std_logic vector(4 downto 0);
30 -- match_bus from CAM-words

31 match_bus : in std_logic_vector(31 downto 0)
32);

33 end encode;

34

35 architecture encode of encode is

36 begin

37

ss generate_address: process(match_bus)

39 begin

20 case match_bus is

a when **00000000000000000000000000000001" => addr <= "00000";
42 when *"00000000000000000000000000000010" => addr <= '"00001";
43 when **00000000000000000000000000000100*" => addr <= '00010";
44 when **00000000000000000000000000001000*" => addr <= '00011";
45 when **00000000000000000000000000010000*" => addr <= "00100";
46 when **00000000000000000000000000100000*" => addr <= "00101";
47 when *'00000000000000000000000001000000"" => addr <= '00110";
48 when **00000000000000000000000010000000*" => addr <= '00111";
49 when **00000000000000000000000100000000*" => addr <= '01000";
50 when **00000000000000000000001000000000*" => addr <= "01001";
51 when **00000000000000000000010000000000*" => addr <= "01010";
52 when *'00000000000000000000100000000000"" => addr <= '01011";
53 when **00000000000000000001000000000000"" => addr <= '01100";
54 when **00000000000000000010000000000000"" => addr <= '01101";
55 when **00000000000000000100000000000000*" => addr <= "01110";
56 when **00000000000000001000000000000000*" => addr <= "01111";
57 when *'00000000000000010000000000000000"" => addr <= '"10000";
58 when **00000000000000100000000000000000*" => addr <= '10001";
59 when **00000000000001000000000000000000*" => addr <= '10010";
60 when **00000000000010000000000000000000*" => addr <= "10011";
61 when **00000000000100000000000000000000*" => addr <= "10100";
62 when *'00000000001000000000000000000000"" => addr <= '10101";
63 when **00000000010000000000000000000000*" => addr <= '10110";
64 when **00000000100000000000000000000000*" => addr <= '10111";
65 when **00000001000000000000000000000000*" => addr <= "11000";
66 when **00000010000000000000000000000000*" => addr <= "11001";
67 when ''00000100000000000000000000000000"" => addr <= "11010";
68 when **00001000000000000000000000000000*" => addr <= *11011";
69 when **00010000000000000000000000000000*" => addr <= '11100";
70 when **00100000000000000000000000000000*" => addr <= "11101";
71 when **01000000000000000000000000000000*" => addr <= "11110";
72 when '10000000000000000000000000000000"" => addr <= "11111";
73 when others => addr <= (others => "0%);

74 end case;

75 end process;

76

77 -— Generate the match signal if one or more match(es) is/are found
78 match <= "0" when match_bus =

79 ""00000000000000000000000000000000

so else "17;

81

s2 end encode;

110

components.vhd

001 ——

ooz -— File - components.vhd
o3 —— Project: cam_srll6e
oos —— Author : Geir Nilsen { geirni@ifi.uio.no }

005 ——
os —— This file was created Aug 4 2004 by using a Perl-script, "cam_vhdl.pl"
007 ——

oos —— cam_srll6e project files:

oos —— Top level module: cam_top.vhd

010 —— module: |-> cam _words.vhd
011 —— module: |--> cam_word.vhd
012 —— module: |---> cam_basic.vhd
013 —— module: |-> compare.vhd
014 —- module: |-> counter.vhd
015 —— module: |-> decode.vhd

016 —— module: |-> encode.vhd

017 —— testbench: tb_cam_top.vhd

018 —— package: components.vhd

019 ——

020

o21 library ieee;

022 use ieee.std logic 1164.all;
023

024 package cam_components is
025

026 component compare is

027 generic(

028 longestPattern : integer

029);

030 port(

031 -- Longest pattern to be written

032 addr : in std logic_vector(longestPattern-1 downto 0);
033 -— Output from 16 bit counter

034 cnt : in std logic_vector(3 downto 0);

035 -— LUTs needed for longest pattern

036 data : out std logic_vector(longestPattern/4-1 downto 0)
037);

o3s end component;
039
040 component decode is

041 port(

042 -- WriteEnable

043 we > in std_logic;

044 -- Binary address to words

045 addr : Iin std_logic vector(4 downto 0);
046 -- Select one word

047 word_sel : out std logic_vector(31 downto 0)
048);

049 end component;

050

os1 component cam words is
52 generic(

053 longestPattern : integer;

054 numOfPatterns : integer

055);

056 port(

057 addr = in std_logic vector(longestPattern-1 downto 0);
058 -— Out of compare. In to CAM

111

059 data > in std_logic_vector(longestPattern/4-1 downto 0);
060 clk - in std_logic;

061 rst - in std_logic;

062 -—- Enable to find a match, otherwise no change on match bus
063 match_en : in std _logic;

064 -— Out of decoder. In to CAM

065 word_sel : in std_logic vector(numOfPatterns-1 downto 0);

066 -- Out of CAM. In to encoder

067 match_bus : out std_logic_vector(numOfPatterns-1 downto 0)

068);

os9 end component;

070

o721 component cam_word is
o2 generic(

073 numOfLuts : integer

o7a)3

075 port(

076 addr - in std_logic vector(numOfLuts*4-1 downto 0);
077 -- Write one bit to X cam_basic cells in parallell

078 data : In std_logic_vector(numOfLuts-1 downto 0);
079 -— Write Enable during 16 clock cycles

080 write_en - in std_logic;

081 clk > in std_logic;

082 rst - in std_logic;

083 -- And gate should be disabled during write

084 match_en > in std_logic;

085 -- "1" is the DATA IN matches the stored data

086 match_out : out std_logic

087);

oss end component;

089

oso component cam_top is
o1 generic(

092 longestPattern : integer := 256;

093 addrBits : integer := 5;

094 numOfPatterns : integer = 32

095);

096 port

097 clk - in std_logic;

098 rst : In std _logic;

099 -- Data to compare or to write

100 cam_data - in std_logic vector(longestPattern-1 downto 0);
101 -— Address when write ONLY

102 cam_wordaddr_in : in std logic vector(addrBits-1 downto 0);
103 -- Match address

104 cam_wordaddr_out : out std_logic_vector(addrBits-1 downto 0);
105 cam _write_rdy : out std_logic;

106 -— "1" starts a 16 clock cycle write

107 cam _write_en - in std_logic;

108 -- Enable to find a match, otherwise no change on match bus.
109 cam_match_en > in std_logic;

110 -- "1" if match found

111 cam_match : out std_logic

112);

113 end component;

114

115 component counter is

116 port(

117 -- one high write_en starts 16 write cycles when going low
118 write_en : in std logic;

119 clk > in std_logic;

112

120 rst > in std_logic;

121 -— Write enable valid during 16 clock cycles
122 we : out std_logic;

123 -— Copy of counter value

124 cnt - out std_logic_vector(3 downto 0)
125);

126 end component;
127
128 component encode is

129 port(

130 -- "1" if match is found

131 match : out std_logic;

132 -- Match address

133 addr : out std_logic vector(4 downto 0);
134 -- match_bus from CAM-words

135 match_bus - in std_logic_vector(31 downto 0)
136);

137 end component;
138
139 component cam_basic is

140 port(

141 data - in std_logic; -- Data to write (one bit at a time)
142 write_en :© in std_logic;

143 clk - in std_logic;

144 addr - in std_logic_vector(3 downto 0);

145 match_in - in std_logic; -- Input to MUXCY (carry-in)

146 match_out : out std logic —-— Output from MUXCY (carry-out)

147);

148 end component;
149
150 end cam_components;

tb_cam_top.vhd

001 ——

ooz -— File : tb_cam_top.vhd
o3 —— Project: cam_srll6e
ooa —— Author : Geir Nilsen { geirni@ifi.uio.no }

005 ——
os —— This file was created Aug 4 2004 by using a Perl-script, "cam_vhdl.pl"
007 ——

oos —— cam_srll6e project files:

oos —— Top level module: cam_top.vhd

010 —— module: |-> cam_words.vhd

011 —- module: |--> cam_word.vhd

012 —— module: |---> cam_basic.vhd

013 —- module: |-> compare.vhd

014 —— module: |-> counter.vhd

015 —— module: |-> decode.vhd

016 —— module: |-> encode.vhd

017 —— testbench: tb_cam top.vhd

018 —— package: components.vhd

019 ——

020

021 ——

022 —— Behavioral simulation at 10 ns clock cycles.

023 —— 2 clock cycles delay after match enable goes high
024 ——

025 —— reset: 30 ns

026 —— write: 16*160ns = 5120 ns

027 —— matching: 20 ns Before match

113

028 —— 32*10ns = 320 ns Match status
029 —— 20 ns Get last 2 matches
030 ——

031 —— Sum: 5510 ns

032 ——

033

o3a library ieee;

o35 use ieee.std_logic_1164._all;

036 use ieee.std logic arith.all;

037 use work.cam_components.all;

038

039 entity testbench is

040 generic(

041 longestPattern : integer := 256;
042 addrBits : integer := 5;
043 numOfPatterns : integer = 32

044 ;

oss end testbench;

046

047 architecture testbench of testbench is
oas signal cam_data

049 std_logic_vector(longestPattern-1 downto 0) := (others => "0%);
os0 signal cam_data_ reg :

051 std_logic_vector(longestPattern-1 downto 0) := (others => "0%);
os2 signal cam_wordaddr_in :

053 std_logic_vector(addrBits-1 downto 0) = (others => "07%);
osa signal cam_wordaddr_in_reg :

055 std_logic_vector(addrBits-1 downto 0) := (others => "0%);
os6 signal cam_write_rdy :

057 std_logic 1= "0%;

058 signal cam_write_en :

059 std_logic = "0%;

os0 signal clk :

061 std_logic = "0%;

os2 signal rst :

063 std_logic = "0%;

osa signal cam_match_en :

065 std_logic = "0%;

e signal cam_match_en_reg :

067 std_logic 1= "0%;

068 signal cam_wordaddr_out :

069 std_logic_vector(addrBits-1 downto 0) := (others => "0%);
oo signal cam_match :

o071 std_logic = "0%;

o2 constant half_period :

073 time = 5 ns;

074

075 -- Bitvectors are set to equal size to make the testbench easier to read.
076 -— In hardware the " _00..."-part may be omitted

o7z type pattern_array is

078 array(0 to numOfPatterns-1) of bit vector (longestPattern-1 downto 0);
o9~ constant pattern : pattern_array = (-- Content of CAM

080 X"'66696c656€616d653d5¢c466978323030312e6578655¢c_00000000000000000000"",
081 X"'6c736F66253230_00"",
082 X"'6a6176617363726970745c3a2f2Ff_000000000000000000000000000000000000"",
083 X"'64313368685b_00"",
084 X""2¥6578616d706c65732F736572766c65742F536e6F6TF70536572766c6574_0000",
085 X"'616c6c5F7461625F636F6c756d6e73_0000000000000000000000000000000000*",
086 X"'0F0000000373686F7720646174616261736573_00000000000000000000000000"",
087 X"'66696c656€616d653d5¢c4355504944322e4558455¢c_0000000000000000000000"",
088 X"'2e€6173702e_00"",

114

089 X""2¥766965772d736F75726365_00"",

090 X"'4142434445464748494a4b4c4d4e4$5051525354555657414243444546474849",
091 X"'02010004820100_00"",
092 Xx"'2e2e5c5¢c_00"",
093 X"'2F776169732e706c_00"",
094 X"'496e646578206F6620216367692d62696e2F _0000000000000000000000000000"",
095 X"'ce63d1d216e713cf39a5a586_00"",
096 X""2¥73746F72652e636769_00"",
097 X"'416d616e6461_00"",
098 X"'0000000000000002000186a1_00"",
099 X"'2¥6262735F666F72756d2e636769 _000000000000000000000000000000000000"",
100 X"2F75706c6¥616465722e657865 _00000000000000000000000000000000000000"",
101 X"'65706c792d74613a20617e2e602162696e2F_0000000000000000000000000000"",
102 X"'6¢c000b000000000000000000_00"",
103 X"'2F7573722¥62696e2F637070_00"",
104 X"'2F72656769737465722e636769_00000000000000000000000000000000000000"",
105 X"'2¥70617373776F72642e6367692e746d70_000000000000000000000000000000"",
106 X"*00_000000000000000000000000*",
107 X"'2¥2e2e2563302561662e2e2f_00"",
108 X"'2¥69697373616d706c65732F_00"",
109 X"'00556e69780053616d6261_00"",
110 X"'2b06104014d10219_00"",
111 X"'484541442%2e2f _00**
112);

113

114 -— A (userdefined) pattern not to be found in CAM

115 constant error_pattern - bit vector(longestPattern-1 downto 0) :=

116 X"'BB™";
117 begin

118
119 uut: cam_top port map(

120 cam_data => cam_data_reg,

122 cam_wordaddr_in => cam_wordaddr_in_reg,
122 cam_write_en => cam _write_en,

123 cam_write_rdy => cam_write_rdy,

124 clk => clk,

125 rst => rst,

126 cam_match_en => cam_match_en_reg,

127 cam_wordaddr_out => cam wordaddr_out,

128 cam_match => cam_match

129);

130

131 clk <= not(clk) after half_period;

132

133 thb: process

134 begin

135

136 rst <= "0"; wait for 2*half_period;
137 rst <= "1%; wait for 2*half_period;
138

139 -- Syncronize signals to rising edge
140 ifT not rising_edge(clk) then
141 wait for half _period;

142 end if;
143

144 -—- write new data to CAM. Write to all CAM-locations

14s For 1 in O to numOfPatterns-1 loop

146 -- example: "1" <= "01"

147 cam_wordaddr_in <= conv_std_logic_vector(i,addrBits);
148 cam_data <= to_stdlogicvector(pattern(i));

149 if(cam_write rdy="0") then

115

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

e

cam write_en <= "1"; wait for

c
end

for 1

walt until cam_write rdy = "17;
nd if;
- Start counter

- 15 clock-cycles left of writecycle
am_write en <= "0";
loop;

2*half_period;

wait for 15*2*half_period;

"read" CAM: verify that data has been written to CAM
cam_match _en <= "17;

in O to numOfPatterns-1 loop

if(i=numOfPatterns-2) then
cam_data <= to_stdlogicvector(error_pattern); -- Make mismatch

e

e

Ise

cam_data <= to_stdlogicvector(pattern(i));

nd if;

wait for 2*half _period;

end

loop;

cam_match_en <= "0%;

wait; -- Prevent simulation to wrap around

end p
-- Re
io_re
begin

rocess,;

gistered 1/0
gister: process(rst, clk)

if(rst = "0") then

cam_data reg <= (others => "0%);
cam_wordaddr_in_reg <= (others => "0%);
cam_match_en_reg <= "0°";
else
if rising_edge(clk) then
cam_data reg <= cam_data;
cam_wordaddr_in_reg <= cam_wordaddr_in;
cam_match_en_reg <= cam_match_en;
end if;
end if;
end process;

101 end testbench;

tb_cam_top.fdo

User defined fdo-file.
Created Aug 4 2004

vlib
vcom
vcom
vcom
vcom
vcom
vcom
vcom
vcom
vcom
vcom
vsim
view

-work
-work
-work
-work
-work
-work
-work
-work
-work
-work

m:/www_docs/research/ise/simulation/cam
m:/www_docs/research/ise/simulation/cam
m:/www_docs/research/ise/simulation/cam
/www_docs/research/ise/simulation/cam
/www_docs/research/ise/simulation/cam
/www_docs/research/ise/simulation/cam
/www_docs/research/ise/simulation/cam
/www_docs/research/ise/simulation/cam
m:/www_docs/research/ise/simulation/cam
m:/www_docs/research/ise/simulation/cam
m:/www_docs/research/ise/simulation/cam

m:
m:
m:
m:
m:

-nologo -93 -explicit ./counter.vhd
-nologo -93 -explicit ./compare.vhd
-nologo -93 -explicit ./decode.vhd
-nologo -93 -explicit ./encode.vhd
-nologo -93 -explicit ./cam_basic.vhd
-nologo -93 -explicit ./components.vhd
-nologo -93 -explicit ./cam_word.vhd
-nologo -93 -explicit ./cam_words.vhd
-nologo -93 -explicit ./cam_top.vhd
-nologo -93 -explicit ./tb_cam top.vhd

-t 1ps -lib m:/www_docs/research/ise/simulation/cam testbench

wave

onerror {resume}

116

quietly WaveActivateNextPane {} O
-noupdate -format Logic
-noupdate -format Logic
-noupdate -format Literal
-noupdate -format Literal
-noupdate -format Logic
-noupdate -format Logic
-noupdate -format Logic
-noupdate -format Literal
-noupdate -format Logic
TreeUpdate [SetDefaultTree]
WaveRestoreCursors {0 ps}
WaveRestoreZzoom {4950 ns} {5510 ns}

add
add
add
add
add
add
add
add
add

configure
configure
configure
configure
configure
configure
configure
configure

wave
wave
wave
wave
wave
wave
wave
wave
wave

wave
wave
wave
wave
wave
wave
wave
wave

run 5510ns

-namecolwidth 160
-valuecolwidth 130
-justifyvalue left
-signalnamewidth 1
-snapdistance 10
-datasetprefix 0O
-rowmargin 4
-childrowmargin 2

/testbench/rst

/testbench/clk

-radix ascii /testbench/cam_data
/testbench/cam_wordaddr_in
/testbench/cam_write_rdy
/testbench/cam_write_en
/testbench/cam_match_en
/testbench/cam_wordaddr_out
/testbench/cam_match

117

F.2 Modules for Debugging

These are the modules used for debugging.
e lcd.vhd
o Controller for the LCD.
e pButton.vhd
o0 A “debouncer”. Gives a one clock cycle pulse no matter how long the button is activated.
e led_flash.vhd
o0 Ensures that the LED flashes for a given time, even if the duration of the active input is
too short to make the LED glow.

lcd.vhd

001 ——

o2 —-— File : led.vhd

oos —— Author : Geir Nilsen { geirni@ifi.uio.no }

oos —— Created : Oct 13 2003

005 ——

e —— Description:

007 —-— Controller to LCD (MDL-16265-LV). Specially designed for a Memec Virtex-11
008 —-— Pro Development Board (DS-BD-2VP4/7-FG456 Rev 4) equipped with an XC2VP7

009 ——

010

o library ieee, unisim;

012 Uuse ieee.std_logic_1164._all;

o13 use ieee.std logic unsigned.all;
o14 use ieee.std logic arith.all;

015

o6 entity lcd is

017 generic(

018 -— The following parameters are given that 'clk' is running at 100 MHz

019 -— Timing parameters for write operation

020 tcycE :- integer = 50; -- Enable cycle time (min 500 ns)
021 PWEH : integer := 23; -- Enable pulse width (high level) (min 230 ns)
022 tEr : integer = 1; -- Time rise (max 20 ns)
023 tEF : integer := 1; -- Time fall (max 20 ns)
024 tAS : Integer = 4; -- Address setup time (RS, R/W to E) (min 40 ns)
025 tAH : Integer = 1; -- Address hold time (min 10 ns)
026 tDSW - integer = 8; -- Data set-up time (min 80 ns)
027 tH : integer = 1; -- Data hold time (min 10 ns)
028

029 -— The instruction delay needs an n+l bit counter

030 upperDelaylndex : integer := 20 -- All bits = "1° => 20.9 ms

031);

032 port

033 clk - in std_logic;

034 rst : in std_logic;

035 -- lcd_data(8) = RS (register select)

036 lIcd data_in : in std logic vector(8 downto 0);

037 lIcd _data _out : out std logic vector(8 downto 0);

038 lcd _en : out std_logic;

039 -- HandShake: LCD is ready to write a new instruction

040 lcd_rdy : out std_logic;

041 -- HandShake: A new instruction is given at lcd data

042 lcd_start > in std_logic

043);

118

044 €N
045

d Icd;

oss architecture lcd of lcd is

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097 ——
098 ——
099 ——
100 —-—
101 ——
102 —-—
103 ——
104 ——

type lcdInit _type is array(0 to 6) of std logic vector(8 downto 0);
constant lcdlnitArray - lcdInit_type := (
-- Function set: 8 bit data length, 2 lines, 5x8 character font
'*000111000",
''000111000",
''000111000",
''000111000",
-— Entry mode set: Increment one AC (address counter), shift disabled
'*000000110",
-— Display on/off control: Display on, cursor off, cursor blink off
''000001100",
-— Clear display
'000000001""
):
signal cntinitArray : integer range 0 to lcdInit_type“high+1;
signal cntinitArraylnc : std_logic;

type lcdStateType is (
waitl, wait2, wait3, -- Init only
idle, —- Wait for lcd_start to go high. Set lcd_rdy high
start, pullup, datawait, dataWrite, pulldown, dataHold, -- One write
wait4, waits, -- Wait for instruction to complete
done

)
signal lcdState, nextState : lcdStateType;

-— Counts cycles needed for one write operation

signal cntWrite . integer range 0 to tcycE+tAS;

signal cntWritelnc : std_logic; -- Increment cntWrite
signal cntWriteRst : std _logic; -— Reset cntWrite

-— Counter for delays
signal cntDelay : std _logic_vector(upperDelaylndex downto 0);
signal cntDelayRst : std_logic;

-— waitlDelay: Power on init (wait more then 15 ms): 11" after 15.7 ms
-— wait2Delay: Power on init (wait more than 4.1 ms): "1° after 5.2 ms
-- wait3Delay: Power on init (wait more than 100 wus): "1 after 16.3 us

-— wait4Delay: Instruction delay (clear display, return home, entry mode set)

-— (wait more than 1.64 ms): "11" after 1.96 ms
-— waitbDelay: Instruction delay (remaining instructions)
-— (wait more than 40 us): "11" after 61.4 us
- NOTE: 40.9 us is not enough

alias waitlDelay : std logic vector(1l downto 0) i
alias wait2Delay : std logic
alias wait3Delay : std logic
alias wait4Delay : std _logic_vector(1l downto 0) i
alias waitSDelay : std logic _vector(1l downto 0) i

s cntDelay (20 downto 19);
s cntDelay(19);

s cntDelay(14);
s
s

cntDelay (17 downto 16);
cntDelay (12 downto 11);

Uncomment these signals for simulation.

Comment out the above duplicate signals

signal cntDelay : std logic_vector(3 downto 0);
alias waitlDelay : std logic_vector(1l downto 0)
alias wait2Delay : std logic

alias wait3Delay : std logic

alias wait4Delay std_logic_vector(1l downto 0) i
alias waitbDelay : std logic_vector(1l downto 0) i

cntDelay (3 downto 2);
cntDelay(0);
cntDelay(0);
cntDelay(1l downto 0);
cntDelay(1 downto 0);

nounonon

119

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

-- Register lIcd data
signal lcd _data_sig : std _logic;

signal lcd data reg : std logic vector(8 downto 0);

begin
Icd_data_out <= lcd_data_reg;

lcd FSM: process(

lcd _start, cntlnitArray,

waitlDelay, wait2Delay, wait3Delay, wait4Delay, waitbSDelay)

clk, rst, lcdState, cntWrite, cntDelay,
begin

Icd_en <= "0°";

cntWritelnc <= "07;

cntWriteRst <= "0";

cntDelayRst <= "0°";

nextState <= lcdState;

lcd_rdy <= "0°";

Icd _data_sig <= "0°";

cntlnitArraylnc <= "0°;

case lcdState is

when waitl =>
it (waitlDelay="11") then

nextState <= start;
else

nextState <= waitl;
end if;

when wait2 =>
it (wait2Delay="1") then

nextState <= start;
else

nextState <= wait2;
end if;

when wait3 =>
it (wait3Delay="1") then

nextState <= start;
else

nextState <= wait3;
end if;

when idle =>
lcd_rdy <= "1°%;
if(lcd_start="1") then

Icd _data_sig <= "17;
nextState <= start;
else
nextState <= idle;
end if;
when start =>
cntWritelnc <= "17;

it (cntWrite <

nextState <= start;
else

nextState <= pullup;
end if;

tAS-tEr) then

120

-- Write to LCD

lcd _data reg,

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

when pullup =>

cntWritelnc <= "1°7;
it (cntWrite < tAS) then
nextState <= pullup;
else
nextState <= dataWait;
end if;
when dataWait =>
cntWritelnc <= "17;
Icd _en <= "1°%;

if (cntWrite <

tAS+(PWEH-tDSW)) then

nextState <= dataWait;
else

nextState <= dataWrite;
end if;

when dataWrite =>

cntWritelnc <= "1°7;
Icd _en <= "1°;
if (cntWrite < tAS+PWEH) then
nextState <= dataWrite;
else
nextState <= pulldown;

end if;

when pulldown =>
cntWritelnc <= "1°7;
if (cntWrite < tAS+PWEH+tEF) then
nextState <= pulldown;
else
nextState <= dataHold;
end if;

when dataHold =>
cntWritelnc <= "1°7;
if (cntWrite < tAS-tEr+tcycE) then
nextState <= dataHold;
else
it (Icd _data reg(8 downto 3)="000000"") then
nextState <= wait4; -- 1.64 ms iInstruction
else
nextState <= wait5;
end if;
end if;

—-- 40 us instruction

when wait4 =>
it (wait4Delay="11") then
nextState <= done;
else
nextState <= wait4;
end if;

when waitbh =>
it (waitbDelay="11") then
nextState <= done;
else
nextState <= waith;
end if;

when done =>

121

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

cntWriteRst <= "1°7;
cntDelayRst <= "1°7;

if (entlnitArray < lcdlnit _type“high+l) then
cntinitArraylnc<="1";
end if;

ifT (cntlnitArray = 0) then
nextState <= wait2;
elsif (cntlnitArray=1) then
nextState <= wait3;
elsift (cntlnitArray < lcdInit_type“high) then
nextState <= start;
else
nextState <= idle;
end if;

when others => null;
end case;
end process;

init_counter: process(rst, clk, cntlnitArraylnc)
begin
if (rst="0") then
cntinitArray <= 0;
elsif(rising_edge(clk) and cntinitArraylnc = "1%) then
cntinitArray <= cntlnitArray + 1;
end if;
end process;

Icd_data_register: process(clk,rst, lcd data sig, lcd data_in,cntinitArray)
begin
if (rst="0") then
Icd_data_reg <= lcdInitArray(0);
elsif (rising_edge(clk)) then
ifT (entlnitArray < lcdInit_type“high+1l) then
Icd _data_reg <= lcdlnitArray(cntinitArray);
elsift (lcd_data_sig="1") then
Icd_data_reg <= lcd_data_in;
end if;
end if;
end process;

writeCounter: process(clk,rst,cntWriteRst,cntWritelnc)
begin
if (rst ="0" or cntWriteRst="1") then
cntWrite <= 0;
elsif (rising_edge(clk) and cntWritelnc="1") then
cntWrite <= cntWrite + 1;
end if;
end process;

delayCounter: process(clk,rst,cntDelayRst)
begin
if (rst = "0 or cntDelayRst = "1%) then
cntDelay <= (others => "0%);
elsif rising_edge(clk) then
cntDelay <= cntDelay + 1;
end if;

122

288
289
290
291
292
293
294
295
296
297
298
299

pButton.vhd

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

end process;

IcdStateRegister: process (clk,rst,nextState)

begin

if (rst="0") then
IcdState <= waitl;

elsif rising_edge(clk) then
IcdState <= nextState;

end if;

end process;

end lcd;

-- File

: pButton.vhd

-- Author: Geir Nilsen { geirni@ifi.uio.no }

-- Created: Oct 9 2003

-- Description: When pushbutton have given a stable signal for "delay" clock

cycles, a valid pulse of one clock cycle is passed on to a
register. Before making a new valid pulse the pushbutton must
have been relased for *"delay”™ clock cycles.

library ieee;
use ieee.std logic 1164.all;

entity pButton is

generic(
delay : integer := 1000000 -- 0.0l1ls at 100 MHz
)
port
clk :in std_logic;
rst :in std_logic;
pButtonin : in std_logic;
pButtonOut : out std logic
)

end pButton;

architecture pButton of pButton is

type
signal

signal
signal
signal

signal
signal
begin

PB_STATE_type is (pb_down, pb_up); -- FSM for pButtonln-button
pb_state, next pb state : PB_STATE_TYPE;

pButtonln_counter > integer range 0 to delay;
inc_pButtonln_counter : std_logic;

pButtonlin_counter_rst : std_logic;
pButtonOut_sig : std _logic;
pButtonOut_reg : std logic;

pButtonOut <= pButtonOut_reg;

PB_state machine: process(pb_state,pButtonln,pButtonln_counter)

begin

inc_pButtonln_counter <= "0°;
pButtonln_counter_rst <= "0";

123

047 next_pb_state <= pb_state;
048 pButtonOut_sig <= "0°";

049

os0 case pb_state is

051

052 -- pButtonln must have been down for a while before
053 -— pButtonOut goes high

054 when pb_down =>

055 if (pButtonln = "0") then

056 iT (pButtonln_counter < delay) then
057 inc_pButtonln_counter <= "1°7;

058 next_pb_state <= pb_down;

059 else

060 pButtonOut_sig <= "1°%;

061 pButtonln_counter_rst <= "1°;

062 next_pb_state <= pb_up;

063 end i1f;

064 else

065 pButtonln_counter_rst <= "1°;

066 next _pb_state <= pb_down;

067 end i1f;

068

069 -- pButtonln must have been relased for a while before
070 -- pButtonOut can go high again

071 when pb_up =>

072 it (pButtonln = "0%) then

073 pButtonln_counter_rst <= "17;

074 next _pb _state <= pb_up;

075 else

076 iT (pButtonln_counter < delay) then
077 inc_pButtonln_counter <= "1°7;

078 next _pb state <= pb_up;

079 else

080 pButtonln_counter_rst <= "1°;

081 next pb state <= pb_down;

082 end i1f;

083 end if;

084

oss end case;

086 end process;

087

088

089

os0 pButtonOut_register: process (clk,rst,pButtonOut_sig)
oo1 begin

092 if (rst="0") then

093 pButtonOut_reg <= "1°7;

094 elsif (rising_edge(clk)) then
095 if (pButtonOut_sig="1") then
096 pButtonOut_reg <= "0%;

097 else

098 pButtonOut_reg <= "1°7;

099 end if;

100 end if;

101 end process;

102

103 PB_pButtonln_counter: process(clk,rst,inc_pButtonln_counter,

104 pButtonln_counter_rst)
10s begin

106 if (rst = "0") then

107 pButtonln_counter <= 0;

124

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

elsif (rising_edge(clk)) then
if (pButtonln_counter_rst = *
pButtonln_counter <= 0;
end if;
it (inc_pButtonln_counter = *
pButtonln_counter <= pButto
end if;
end if;
end process;

PB_pButtonln_statereg: process (c
begin
if (rst = "0") then
pb_state <= pb_down;
elsif (rising_edge(clk)) then
pb_state <= next_pb_state;
end if;
end process;

end pButton;

led flash.vhd

001 ——

o2 —— File : led_flash.vhd

03 —-— Author : Geir Nilsen { geirni
ooa —— Created : Mars 5 2004

005 ——

s —— Description:

007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038

Make flashing leds

library ieee;
use ieee.std logic 1164.all;

entity led_flash is

generic(
litetime : integer := 1000000
)
port
clk > in std_logic;
rst - in std_logic;
sig_in : in std logic;
led reg : out std logic
)

end led_flash;

1) then

17) then
nin_counter + 1;

Ik, rst)

@ifi.uio.no }

-- 1/100 s @ 100 MHz

architecture led flash of led _flash is

type led_type is (led_off, led_on);

signal led _current, led next : led_type;

signal led _cnt_inc : std _logic;

signal led_reg_sig : std_logic;

signal led_cnt : Integer range 1 to litetime;
begin
led_FSM: process(led_current, sig_in, led_cnt)

125

039 begin

040

041 led_cnt_inc <= "0%;
042 led reg_sig <= "0";
043

044 case led _current is
045

046 when led_off =>

047 if (sig_in="1") then

048 led next <= led_on;
049 else

050 led next <= led off;
051 end if;

052

053 when led_on =>

054 led_reg_sig <= "1°7;

055 led cnt_inc <= "1°7;

056 if (led_cnt=litetime) then
057 if (sig_in="1") then
058 led _next <= led on;
059 else

060 led_next <= led_off;
061 end if;

062 else

063 led next <= led_on;
064 end if;

065

066 when others => null;

67 end case;

oss end process;

069

oo led_counter: process (rst, clk, led_cnt_inc)

o712 begin

072 if (rst="0") then

073 led cnt <= 1;

o2 elsif(rising_edge(clk)) then
075 if (led_cnt=litetime) then
076 led_cnt <= 1;

077 elsif (led_cnt _inc="1") then
078 led cnt <= led cnt + 1;

079 end if;

080 end if;

081 end process;

082

os3 led_FSM_state register: process(rst, clk)

osa begin

085 if (rst="0") then

086 led_current <= led_off;

s7 elsif (rising_edge(clk)) then
088 led _current <= led_next;

089 end if;

o0 end process;

091

o2 led_register: process (rst, clk, led reg sig)
093 begin

094 if (rst="0") then

095 led reg <= "17;

s elsif (rising_edge(clk)) then
097 if (led_reg _sig="1") then
098 led reg <= "07;

099 else

126

100
101
102
103
104

led reg <= "1°;
end if;

end if;
end process;

105 end led flash;

F.3 The PC — FPGA Interface

These are the modules that make a communication between the FPGA and the PC possible.

ids.c

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

ids.c
0 The User Interface running on the PC.
rs232rx.vhd
0 The serial receiver module in the FPGA.
rs232tx.vhd
0 The serial transmitter module in the FPGA
devboard.vhd
o0 A design for testing the RS232 connection, and the hardware debugging options on the
Development Board.
ids128.vhd
o Top level module for a 128 word CAM.
components.vhd
o Factoring out component declarations to keep a better overview in the other files.
devboard.ucf
0 User Constraints File. Attach a signal in VHDL to a pin on the FPGA. Nothing will work
in the FPGA without having a file like this. This specific file is designed for use with
devboard.vhd above.

File: 1ds.c
Author: Geir Nilsen { geirni@ifi.uio.no }
Created February 3 2004

Description:
Designed to work with §dsXXX.vhd (ids008.vhd, ids128.vhd etc) and
devboard.vhd.. Constants LONGESTPATTERN and NUMOFPATTERNS must be changed
each time a new 1dsXXX.vhd is to be tested; ids.c must then be recompiled.

The two delay functions, delay u (microseconds) and delay m
(milliseconds), are tested at a PC with a 466 MHz CPU. These two functions
must be rewritten to the spesific CPU that are to be used.

The serial communication will work when compiled to Winl6.
Borland C/C++ 4.0 was used to accomplish this.

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

127

0026
o027 #define COM1 Ox3f8
o028 Hdefine COM2 Ox2f8

0029

o030 #define LONGESTPATTERN 60 // hexnumbers-----—-—-—————————- ARGV
o031 #define NUMOFPATTERNS 8 // ARGV

0032

oo3z //#defFine LONGESTPATTERN 64 // hexnumbers-----————————- ARGV
o034 //#define NUMOFPATTERNS 128 // ARGV

0035

0036

oos7 #define MAXCAMDATALENGTH 64 // 32 byte (hex)
0038

0039

oos0 #define ESC 27

oos1 #define clear_ LCD 1

ooa2 #define linelposO 128

oosz #define line2posO0 192

ooas #define cursor_off 12 // Display on
ooss #define cursor_on 15 // Display on
oose #define display off 8

ooa7 #define cgram 64 // Set CGRAM address O

0048

ooas #define NOP 0 // Set instruction register in FPGA
ooso #define camData 3 // CAM data shift enable

oos1 #Hdefine camDataOff 8

oos2 #define camAddr 4 // CAM addr shift enable

oos3 #define camAddrOff 1

oosa #define camWrite 5 // Trigger

ooss #define camMatchOn 6

oose Hdefine camMatchOffF 7

0057

ooss // Needs a terminating character

ooss char camdata[[NUMOFPATTERNS][MAXCAMDATALENGTH + 17;

0060

oos1 char *file_camdata = "m:\\www_docs\\research\\ise\\source\\cam\\camdata.txt";
ooe2 char *file_log = "m:\\www_docs\\research\\ise\\source\\ids\\ids log.txt";
ooss FILE *logfile;

ooea Cchar s_in[80]; // Input string from keyboard etc

ooss char command = 0O;

0066

oos7 VOid iInit (void);
ooss // Load defaults and write to all CAM-words
oose vVoid CAM_init (void);

o070 // Write new data to single CAM-word. Update dataset on PC

oo71 void CAM_write update (int);

oor2 // Write new data to single CAM-word. Do not update dataset on PC
oo73 void CAM_write noupdate (void);

oo7a // DEBUG: ReWrite one word from dataset

oo7s void CAM_rewrite (void);
ooz // Write one byte to CAM (Help function to the four above)
oo77 void CAM_write (int);
oors void CAM_verify (void);

oore // Display CAM-data (all words)
ooso vVoid display CAM_data (void);
oos1 // Display single word in CAM-data
oos2 void display_ CAM_word (void);

ooss void help (void);
oosa vVoid getText (void);
ooss void hrule (void);
ooss void delay u (int);

128

oos7 void delay m (int);

ooss INt hex2dec (int, int);

ooss // Test rs232 connection

oo9o vVoid rs232 (void);

ooo1 // Give instruction to LCD

oos2 vVoid lcd_inst (void);

ooss void help_inst (void);

oosa // Loop through LCD codepage

ooss void lcd_loop cp (void);

oose // instruction, single int - string - single char
oog7 void write2lcd (int, char*, int);

ooss VOoid write2cgram (int);

0099

0100 // —————— -

0101

o102 Int main(){
0103

0104 initQ;
0105

owos while(1){

0107 hrule();

0108 printf('> ");

0109 fprintf(logfile, "> ');

0110 command=tolower(getch());

0111

0112 if (command=="1") CAM_init();

0113 else if (command=="2") CAM_write_update(l);
0114 else if (command=="3") CAM_write update(0);
0115 else if (command=="4") CAM_rewrite();

0116 else if (command=="5") display_CAM data(Q);
0117 else if (command=="6") display_CAM_word();
0118 else it (command=="7") CAM_verify(Q);

0119

0120 else if (command=="t") rs232();

0121 else if (command=="1") lcd_loop cpQ);

0122 else if (command=="1") lcd_inst();

0123 else if (command=="c") write2cgram(l);

0124 else if (command=="h") help(Q);

0125 else if (command==ESC){

0126 printFC'Quit\n\n\n"");

0127 fprintf(logfile, "Quit\n\n\n'");

0128 fclose(logfile);

0129 write2cgram(2);

0130 return O;

0131 }

0132 else {

0133 printf('Unknown command. Type "h® for help\n');
0134 }

0135 }

0136 }

0137

0138 // ————

0139
o140 Void init(Q{
oia1 // Set up UART: 115200 baud, no parity, 8 data bits, 1 stop bit
0142 // COM1

o143 outp(COM1
0144 outp(CoM1
oas outp(COM1
o146 outp(COM1
o147 outp(COM1

0x80); // Set DLAB on

0x00); // MSB of BAUD rate divisor

0x01); // LSB of BAUD rate divisor

0x03); // DLAB off. Set: no parity, 1 stop bit, 8 data bits
0x47); // Enable FIFO

+ 4+ + + +
NWO R W

129

0148 //COM2

o149 outp(COM2
oiso outp(COM2
o151 outp(COM2
o152 outp(COM2
o153 outp(COM1
0154

0155 hrule();
0156 if((logfile=fopen(File_log, "w'"))==NULL){

0x80); // Set DLAB on

0x00); // MSB of BAUD rate divisor

0x01); // LSB of BAUD rate divisor

0x03); // DLAB off. Set: no parity, 1 stop bit, 8 data bits
0x47); // Enable FIFO

+ 4+ + + +
NWO R W

0157 printfF("" Could not open Ffile \"%s\" for writing\n\n", Ffile log);
0158 printf("* No logfile will be written\n");
0159 return;

0160
oer else {

0162 printf("" Log to file \"%s\'"\n\n", file_log);

0163 printf("* Type "h®" for help\n');

o164)

0165

0166 return;

0167 }

0168

0169 // ——— e

0170

o171 void CAM_init(){

0172 FILE *fp;

0173 char c=0;

0174 int i=0;

0175 int j=0;

0176 int count=0;

0177

0178 printf('CAM Init\n\n");
oire FprintfF(logfile, "CAM Init\n\n");
0180

0181 if((fp=fopen(File_camdata, "'r'"))==NULL){

0182 printf("® Could not open Ffile \"%s\'"\n\n", file_camdata);

0183 printf("* Init aborted\n™);

0184 fprintf(logfile, ™ Could not open file \"%s\'\n\n", file_camdata);
0185 fprintf(logfile, " [Init aborted\n™);

0186 return;

o187 ¥

0188

0189 printf("® Reading file \"%s\'\n\n", file_camdata);

oo Fprintf(logfile, " Reading file \"%s\'\n\n", Ffile_camdata);
0191

oz For(i=0; i<=NUMOFPATTERNS-1; i++){

0193 while((c=getc(fp)) = "\n"){ // Read line
0194 camdata[i][j] = c;

0195 count++;

0196 J++;

0197

0198 camdata[i][J] = O; // Terminate string
0199 J=0;

0200 }
o201 Fclose(fp);

0202

0203 //Call CAM write for each word

o20a For(i=0; §<=NUMOFPATTERNS-1; i++){

0205 if(kbhit()){ 7/ Break
0206 getch(Q);

0207 return;

0208 3}

130

0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269

CAM_write(i);
}

printfF(C'\n Size of CAM is %d bytes, %d words\n\n", count/2, NUMOFPATTERNS);
printf("" Init Complete\n'™);
fprintf(logfile,

'\n Size of CAM is %d bytes, %d words\n\n', count/2, NUMOFPATTERNS);
fprintf(logfile, ™ Init Complete\n™);
return;

void CAM write(int word){

int i = 0;
int CAM_byte = 0;
int c = 0;

int lowbyte = O;
int highbyte = 0;
int sum = 0;

//printf(" lowbyte(0) %d \n', low_byte);

outp(COM2, camAddr); // Set FPGA instruction register: CAM address
outp(COM1, word); // Set CAM address LSB
outp(COM2, camAddrOff);
outp(COM2, cambata); // Set FPGA instruction register:
//\rite to cam_data_shiftreg. MSB first

for(i=strlen(camdataJword])-2; 1>=0; 1-=2){
CAM_byte = hex2dec(word, i);
outp(COM1, CAM byte); // Write to datareg
}

// Fill LSB with zeroes
for(i=0; i<(LONGESTPATTERN-strlen(camdataJword]))/2; i++)
outp(CoM1, 0);

outp(COM2, cambDataOff);
outp(COM2, camWrite); // Set FPGA instruction register:
//Enable CAM write (Clears instreg in FPGA)

// Verify write
outp(COM2, camMatchOn);

// lowbyte is sent first from FPGA, but highbyte must be read first
delay m(100); // highbyte
c = inp(COM2 + 5);
if(c & 1){
highbyte = inp(COM2);
//printf(’" highbyte %3d ', highbyte);
3

delay m(100); // lowbyte
c = inp(COM2 + 5);
if(c & 1){
lowbyte = inp(COM2);
printf("" lowbyte %3d \n", lowbyte);
}

131

0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330

}

sum = highbyte+lowbyte;//--———--—-—--————— FIX

//printf(C'Sum: %d\n', sum);

if(sum==word){
printf("® Word in address %3d is written to CAM\n", word);
fprintf(logfile, ' Word in address %3d is written to CAM\n', word);

else{
printfF("" Error! Word in address %3d is not written to CAM\n", word);
fprintf(logfile,

Error! Word in address %3d is not written to CAM\n', word);

}
outp(COM2, camMatchOff);
return;

void CAM_write update(int cam){

int i, j ;
int c
int word
int update // Assume no subset

printf(""Write to single CAM-word. Update dataset on PC\n\n'");

printf("® Press ESC to skip char\n');

printfF("" Type any non-hex digit to skip remaining chars\n\n");

printf("® Address => '");

fprintf(logfile, "Write to single CAM-word. Update dataset on PC\n\n');
fprintf(logfile, " Press ESC to skip char\n™);

fprintf(logfile, " Type any non-hex digit to skip remaining chars\n\n");
fprintf(logfile, " Address => ");

getText();

word = atoi(s_in);

printf(C"\n");

printf("* Addr Len Data (hex)\n'™);

printf('%6d%4d %s\n", word, strlen(camdata[word]), camdata[word]);
printf("\n"");

printf(C* New => ");

fprintf(logfile, '\n");

fprintf(logfile, " Addr Len Data (hex)\n');

fprintf(logfile, "%6d%4d %s\n", word, strlen(camdata[word]), camdata[word]);
fprintf(logfile, ""\n");

fprintf(logfile, ™ New => ");

0;
0;
1;

// Get new data
for(i=0; i<=strlen(camdata[word])-1; i++){
c = tolower(getch());
iF(c==ESC){
s_in[i] = camdata[word][i];
printf("'%c", camdata[word][i]);
fprintf(logfile, "%c", camdata[word][i]);
} else if(isxdigit(c)){
s_in[i] = c;
printf('%c', c);
fprintf(logfile, "%c", c);
} else {
for(J=i; j<=strlen(camdata[word])-1; j++){
s_in[j] = camdata[word][}j1;
printf("'%c™, camdata[word][j1);
fprintf(logfile, "%c'", camdata[word][jJ]);

i=strlen(camdata[word])-1;

132

0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391

}

}

printf("\n"");

fprintf(logfile, "\n");
}
s _in[i+1] = "\0";

// check subsets etc

printf(C"\n");

fprintf(logfile, "\n'");

for(i=0; i<=NUMOFPATTERNS-1; i++){

}

if(strlen(s_in) <= strlen(camdata[i])){
for(J=0; s_in[j]==camdata[i][J]; J+t){
iT(s_in[j] == "\0"){
printf("* Subset found at address %d.', i);

fprintf(logfile, " Subset found at address %d."

update = O;
break;
}
}
}

if(update){

}

strcpy(camdata[word], s_in); // Update dataset on PC
if(cam)

CAM_write(word); // Update CAM
printf(C"\n");

printf("® Update in address %d. PC and CAM updated\n"

printf("* OId val %s\n", camdata[word]);

printfF("" New val %s\n", camdata[word]);
fprintf(logfile, "\n");

fprintf(logfile, " Update in address %d. PC and CAM
fprintf(logfile, ™ OId val %s\n", camdata[word]);
fprintf(logfile, ™ New val %s\n", camdata[word]);
else {

printf("® No update of dataset\n™);

fprintf(logfile, " No update of dataset\n');

return;

void CAM write_noupdate(){
return;

}

void CAM verify({
char ¢ = 0;

//int getC = 0;
int 1 = 0;

int j = 0;
//int k = 0;
int m = 0;

int highbyte = 0;
int lowbyte = O;
int sum = O;

printf('Verify CAM contents\n\n'");

133

, word);

updated\n', word);

0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452

fprintf(logfile, "Verify CAM contents\n\n');
// Set FPGA instruction register: Write to cam_data_shiftreg. MSB first
outp(COM2, cambata);

// Write all words to cam_data_shiftreg
for(i=0; 1<=NUMOFPATTERNS-1; i++){

for(j=strlen(camdata[i])-2; j>=0; j-=2){
if(kbhit()){ // Break
getch();
return;
}
m++;
i1 F(m==LONGESTPATTERN/2-1)
outp(COM2, camMatchOn);
outp(COM1, hex2dec(i, j)); // Write to datareg
printf("* Word %3d Pos %2d %2d: %c%c\n™,
i, j, jJ+1, camdata[i][j], camdata[i][j+1]);
fprintf(logfile, " Word %d Pos %2d %2d: %c%c\n",
i, J, jJ+1, camdata[i][j]., camdata[i][j+1]);

// lowbyte comes first here
delay m(100); // highbyte
c = inp(COM2 + 5);
if(c & 1){
lowbyte = inp(COM2);
//printf("" lowbyte %3d \n', lowbyte);

c = inp(COM2 + 5);
if(c & 1){

highbyte = inp(COM2);

// printf(" highbyte %3d \n ", highbyte);

sum = highbyte+lowbyte;

printf(” FPGA match address: %3d\n", sum);
fprintf(logfile,
" FPGA match address: %3d\n', sum);
}
}/7/ fTor j
} /77 for i

// Shift remaining patterns through CAM by sendig zeroes
for(J=0; J<=LONGESTPATTERN/2; j++){
printf(” 00\n"");
fprintf(logfile, ™ 00\n"");
outp(CoM1, 0);

delay m(100); // highbyte
c = inp(COM2 + 5);
if(c & 1){
lowbyte = inp(COM2);
//printf("" lowbyte %3d \n', lowbyte);
delay m(100); // lowbyte
c = inp(COM2 + 5);
if(c & 1)
highbyte = inp(COM2);//--——-—-————— -~ FIX
//printf("" highbyte %3d \n ", highbyte);

sum = highbyte+lowbyte;//--———--—-———-———— e~
printf(” FPGA match address: %3d\n", sum);

134

0453 fprintf(logfile,

0454 " FPGA match address: %3d\n", sum);
0455 3}

oas6 y// For j

0457

osss outp(COM2, camMatchOff);

oas9 outp(COM2, camDataOff);

0460 return;

0461 }

0462

0463

0464

oses void CAM_rewrite(){

0466 int word = 0O;

0467 //int c, getC;

0468

0469 printf("'Write word from dataset to CAM\n\n'");
0470 printf("® Address => ');

a1 Fprintf(logfile, "Write word from dataset to CAM\n\n');
oa72 Fprintf(logfile, " Address => ");

oa73 getText();

oa7a word = atoi(s_in);

0475 printf(C"\n");

0476 printf("" Write to CAM: \n\n"");

0477 printf("" Addr Len Data (hex)\n');

0478 printf('%6d%4d %s\n*, word, strlen(camdataJword]), camdata[word]);
0479 printf(C"\n");

oaso FprintfF(logfile, "\n");

oas1 Fprintf(logfile, " Write to CAM: \n\n'"");

oas2 Fprintf(logfile, " Addr Len Data (hex)\n'™);
oas3 Fprintf(logfile, "%6d%4d %s\n', word, strlen(camdata[word]), camdata[word]);
oasa Fprintf(logfile, "\n");

0485

oss6 CAM_write(word);

0487 return;

0488 }

0489

0490

0491

oa92 1INt hex2dec(int word, int pos){

0493 int decl, dec2, dec3 = 0;

0494

oaes 1F(isdigit(camdata[word][pos]))

0496 decl = camdata[word][pos] - 48;
0497 else

0498 decl = camdata[word][pos] - 87;
0499

0500 if(isdigit(camdata[word][pos+1]))
0501 dec2 = camdata[word][pos+1] - 48;
0502 else

0503 dec2 = camdata[word][pos+1l] - 87;

0504

0505 dec3 = decl;

0506 dec3 <<= 4;

oso07 dec3 += dec2; // Byte to write to CAM
0508 return dec3;

0509 }

0510

0511

0512

os13 void display_CAM_data(){

135

0514 int i=0;

0515 printf("'Display CAM data (all words)\n\n'");

0516 printf("* Addr Len Data (hex)\n'™);

os1i7 Fprintf(logfile, '"Display CAM data (all words)\n\n');
os1is Fprintf(logfile, " Addr Len Data (hex)\n'™);

os19 For(i=0; i<=NUMOFPATTERNS-1; i++){

0520 printf('%6d%4d %s\n*", i, strlen(camdata[i]), camdata[i]);

0521 fprintf(logfile, "%6d%4d %s\n", i, strlen(camdata[i]), camdata[i]);
0522}

0523 return;

0524 }

0525

0526

0527

os2s void display CAM_word(){

0529 printf('Display CAM word (single word)\n\n');

0530 printf("" Address => ');

os3a1 getText();

0532 printf(’"\n"");

0533 printf("* Addr Len Data (hex)\n');

osaa printf'%6d%4d %s\n",

0535 atoi(s_in), strlen(camdatalatoi(s_in)]), camdata[atoi(s_in)]);
osss Fprintf(logfile, "Display CAM word (single word)\n\n'");

os37 Fprintf(logfile, " Address => ");

os3s Fprintf(logfile, "\n");

os39 Fprintf(logfile, " Addr Len Data (hex)\n');

0540 fprintf(logfile, "%6d%4d %s\n",

0541 atoi(s_in), strlen(camdatalatoi(s_in)]), camdata[atoi(s_in)]);
0542 return;

0543 }

0544

0545 [/ ——— -
0546

osa7 void help(Q{ // Use DOS graphics

0548 printf('Help\n');

0549 printf("\n"");

0550 printf(C* EITIITIRINNRINNNT Main Menu TTRRITRRINRRNNNNI»\N");

):
0551 printf("" © Project ids: °\n'");
0552 printf("" © 1 = CAM Init (write to all CAM-words) °\n'");
0553 printf("" © 2 = Write word to dataset on PC and CAM ©\n'");
0554 printf("* © 3 = Write word to dataset on PC °\n");
0555 printf("" ©° 4 = Write word from dataset to CAM °\n'");
0556 printf("" ©° 5 = Display CAM-data (all words) °\n'");
0557 printf("" © 6 = Display CAM-word (single word) °\n'");
0558 printf("" © 7 = Verify CAM-data °\n");
osso printf("" CAATNN') ;
0560 printf("* © Debug options: °\n'");
os61 printf(C" © t = Test of rs232rx.vhd and rs232tx.vhd °\n");
0562 printf("" © I = Loop LCD CodePage °\n'");
0563 printf("" © i = Give LCD-instruction °\n");
0564 printf("* © c = Write to CG RAM °\n");
oses printf("" CAATNN') ;
0566 printf("* © Other commands: °\n'");
0567 printf("" © h = Help °\n'");
0568 printf("" © Esc = Quit °\n'");

oseo printfC" ETTERNDRDRORRRRRRRRRNNRNNRnnnnnnnnnnnnnnnnennnniv\n");
0570 }

0571

0572

0573
os72 void getText(){

136

os7s while(strlen(fgets(s_in, 80, stdin))<1l);

os76 S_in[strlen(s_in)-1]="\0";

0577 fflush(stdin);

0578 }

0579

0580

0581

oss2 void hrule(){

0583 printf(’"\n"");

osss printFC"AANN™) ;
0586 }

0587

0588

0589

os9o void delay u(int usec){ // usec (based on delay m)
0591 int i, j, k;

os92 For(i=0; 1<=46; i++)

0593 for(j=0; j<=50; j++)

0594 for(k=0; k<=usec; k++);
0595 return;

0596 }

0597

0598

0599

os00 Void delay m(int msec){ // msec (based on experiments)
0601 int i, j, k;

0602 for(i=0; i<=460; i++)

0603 for(j=0; j<=500; j++)

0604 for(k=0; k<=msec; k++);
0605 return;

0606 }

0607

0608

0609

os10 vVoid rs232(){
0611 int getC =
0612 int sendC =
0613 int c =
0614 int LCD_count = 0;

0615 printf("'Test rs232tx.vhd and\n');

0616 printf(” rs232rx.vhd\n\n);

0617 printf(” ");

0618 printf("'Send \'"00011011\" or press ESC to return to main program\n\n');
0619

os20 write2lcd(clear_LCD, 0, 0);

os21 write2lcd(linelposO, 0, 0); write2lcd(0, ™ Test of: ", 0);

os22 write2lcd(line2pos0, 0, 0); write2lcd(0, "rs232tx rs232rx", 0);

os23 write2lcd(linelposO, 0, 0);

0624

os2s while(1){

0626

0
0
0

0627 c = inp(COM1 + 5); // Check to see if new char has been recived from FPGA
0628 if(c & 1){

0629 getC = inp(COM1);

0630 iT(getC==ESC){

0631 printf(C"\n");

0632 return;

0633 }

0634 else {

0635 printf('%c', getC);

137

0636 LCD_count++;

0637 iT(LCD_count==16)

0638 write2lcd(line2pos0, 0, 0);
0639 else iT(LCD_count==32){

0640 write2lcd(linelpos0, 0, 0);
0641 LCD_count = 0;

0642 3}

0643 }

0644 Y} /7 FPGA

0645

0646 if(kbhit()){ // Check to see if new char has been typed at keyboard
0647 sendC=getch();

0648 if(sendC==ESC){

0649 printf(’"\n");

0650 outp(CoM2, 0);

0651 return;

0652

0653 else {

0654 printf("'%c', sendC);

0655 write2lcd(0, 0, sendC);

0656 LCD_count++;

0657 iT(LCD_count==16){

0658 write2lcd(line2pos0, 0, 0);
0659 }

0660 else 1T(LCD_count==32){

0661 write2lcd(linelposO, 0, 0);
0662 LCD_count = O;

0663 3}

0664 }

0665 } // Keyboard

0666

0667 3}

0668 }

0669

0670

0671

oe72 void lcd_inst(){

0673 printf("'Give LCD-instruction\n');
o674 printfC\n");

0675 help_inst(Q);

0676

os77 While(1){

0678 command=tolower (getch());

0679

0680 it (command=="1"){

0681 printf("* Clear\n);

0682 write2lcd(clear_LCD, 0, 0);

0683 }

0684 else if (command=="2"){

0685 printfF("" Set DDRAM addr: Line 1 Pos O\n");
0686 write2lcd(linelposO, 0, 0);

0687 }

0688 else if (command=="3"){

0689 printf("" Set DDRAM addr: Line 2 Pos O\n');
0690 write2lcd(line2pos0, 0, 0);

0691 3}

0692 else if (command=="4"){

0693 printf("® Cursor off\n');

0694 write2lcd(cursor_off, 0, 0);

0695

0696 else if (command=="5"){

138

0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757

}

printf("* Cursor on\n');
write2lcd(cursor_on, 0, 0);

}

else if (command=="6"){
printf("" Display off\n");
write2lcd(display_off, 0, 0);

else if (command=="h")
help_inst(Q);

else if (command==ESC){
outp(COM2, 0);
return;

else {

}

printfF("" Unknown command. Type "h® for

}

void help_inst(Q{

printf("* help\n');

help\n'™)

printf(C* EIIIITLINNND LCD-instruction Menu THITITRINEO»\Nn"");

°\n"")
°\n"")
°\n'")
°\n'")
°\n"'")
°\n"")
°\n"")
°\n')
°\n')
°\n"'")
°\n"")

printf("" ©

printf("* © 1 = Clear

printf("" © 2 = Set DDRAM addr: Line 1 Pos O
printf("" © 3 = Set DDRAM addr: Line 2 Pos O
printf("" © 4 = Cursor off (Display on)
printf("" © 5 = Cursor on (Display on)
printf("* © 6 = Display off

printf("" ©

printf("" © h = help

printf("® © Esc = Back to main program
printf("" ©

printfC"" ETTTITITITTITITININIIIININIIIInInannInInenana\nT);
return;

void lcd loop cp(O{

int i=0;

printf("'Loop LCD CodePage\n');
printf("\n"");

printf("® Press any key to abort\n');

write2lcd(cursor_off, 0, 0);
write2lcd(clear_LCD, 0, 0);
write2lcd(linelpos0, 0, 0);
write2lcd(0, ™ Code Page A-00 ', 0);

for(i=0; i<=255; i++){
write2lcd(line2pos0, 0, 0);
write2lcd(0, " =, 0);
write2lcd(0, 0, i1);
write2lcd(0, " ", 0);
write2lcd(0, itoa(i, s_in, 10), 0);

iT(i==0)
delay_m(3000);

139

0758 else 1If ((16<=i && 1<=31) || (128<=i && i1<=159)) // Blank columns

0759 delay m(50);
0760 else

0761 delay m(500);
0762

0763 iT(kbhit(Q){
0764 getch();

0765 return;

0766 }

o767}

0768

oo outp(COM2, 0); // Set instruction register in FPGA
0770 return;

o771 }

0772

0773

0774

or7s void write2lcd(int cmd, char *s, int c){

0776 int i=0;

0777 if(cmd){

0778 outp(CoOM2, 1); // FPGA instruction register: Shift enable lcd _data_in
0779 outp(CoM1, 0); // MSB lcd _data in. LCD register select: Register
0780 outp(COM1, cmd); // LSB lcd _data in. D7-DO

0781 outp(CoM2, 2); // Write lcd _data in to LCD

0782 if(cmd==clear_LCD)

0783 delay m(2);

0784 else

0785 delay u(50);

0786

ors7 else if(strlen(s)>0){

0788 for(i=0; i<=strlen(s)-1; i++){

0789 outp(CoOmM2, 1);

0790 outp(CoM1, 1); // LCD register select: Data

0791 outp(CoM1, s[i]);

0792 outp(ComM2, 2);

0793 delay u(50);

0794 3}

0795
oo else {

0797 outp(ComM2, 1);
0798 outp(CoOM1, 1);
0799 outp(COM1, c©);
0800 outp(COM2, 2);
0801 delay u(50);
o802 ¥

0803 return;

o804 }

ﬁg void write2cgram(int choice){

0809 int i = 0;

iﬁ if(choice==1){

0812 printF("Write to CG RAM\n\n");

0814 printf(*" pbbbp pbbbp bbbpp bbbbb bpbpbb pbbbb pbbbbb bbbpp \n*);
0815 printf* p p p p b b b b b b b b b b bbpp\n);
0816 printfC" b p bbb bpb bbbb bbbpb bbpp bbbb bbb \n);
0817 printf(" pbp b b bpb b b bbb bbpbp bbbpp bb bb \n");
0818 printfC" b b pbpb bbb bbbb bbbb bbpbp bbbb bbb \n);

140

0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879

printf("* p
printf(”

p b b
Pbbbb ppppp

write2lcd(clear_LCD, O,
write2lcd(cgram, 0, 0);

write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,

write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,

write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,

write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,

write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,

write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,

write2lcd(O,

0
0]
0
0
0
0
0]
0

[eNoloNoNoNoNoNe]

eNoNoNoNoNoNoNe] eNoNoloNoloNoNe] [eNoloNoNoNoNoNe]

eNoNoNoNoNoNoNe]

o

31);
17);
17);
21);
17);
17);
31);

0);

31);
17);
21);
17);
21);
17);
31);

0);

31);
17);
21);
21);
21);
17);
31);

0);

31);
17);
27);
17);
27);
17);
31);

0);

31);
17);
27);
21);
27);
17);
31);

0);

31);
17);
27);
27);
27);
17);
31);

0);

31);

//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//

//

p

pb pbb \n™);

p b b b b b b b b
Pbbbb bpppb bbbbp ppbbb bbbpp bbbbb \n™);

0);

11111

11111
1 1
11 11
111
11 11
1 1
11111

11111
1 1
11 11
11 11
11 11
1 1
11111

11111

141

0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940

write2lcd(0, 0, 17); //
write2lcd(0, 0, 27); //
write2lcd(0, 0, 31); //
write2lcd(0, 0, 27); //
write2lcd(0, 0, 17); //
write2lcd(0, 0, 31); //
write2lcd(0, 0, 0); //
write2lcd(0, 0, 31); //
write2lcd(0, 0, 27); //
write2lcd(0, 0, 21); //
write2lcd(0, 0, 27); //
write2lcd(0, 0, 21); //
write2lcd(0, 0, 27); //
write2lcd(0, 0, 31); //
write2lcd(0, 0, 0); //
write2lcd(linelpos0O, O,

1 1
11 11
11111
11 11
1 1
11111

11111
11 11
111
11 11
111
11 11
11111

0);

write2lcd(0, " Test of CG RAM
write2lcd(line2pos0, 0, 0);
write2lcd(0, ™

for(i=0; i<=7

write2lcd(0, O,

} 7/ choice==1

", 0);

++)

i);

else if(choice==2){

printf(”

// |
printf(’" p
printf("" p
printf("" p p
printf("* p
printf(’" p
printf(”
printf("
printf(”

printf(C"\n");

Pb b bbp
b b

b b bbb
pbpb

bb b b

Design by:\n\n");

write2lcd(clear_LCD, 0, 0);
write2lcd(cursor_off, 0, 0);
write2lcd(cgram, 0, 0);

//

write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,
//

write2lcd(O,
write2lcd(O,
write2lcd(O,
write2lcd(O,

eNoNooNoNoNoNe]

eNoNoNe]

//
//
//
//
//
//
//
//

15);
8);
11);
9);
15);
0);
0);
0);

29);
17);
25);
17);

//
//
//
//

142

", 0);

pbb
bbb

p
bbb

\n");

\n'");
ppbp b p \n");
p ppb P \n");
ppb b b p \n");
P P bbb \n");
Pbb b b \n");

0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001

write2lcd(0, 0, 29); //
write2lcd(0, 0, 0); //
write2lcd(0, 0, 0); //
write2lcd(0, 0, 0); //
//

write2lcd(0, 0, 30); //
write2lcd(0, 0, 18); //
write2lcd(0, 0, 30); //
write2lcd(0, 0, 20); //
write2lcd(0, 0, 18); //
write2lcd(0, 0, 0); //
write2lcd(0, 0, 0); //
write2lcd(0, 0, 0); //
//

write2lcd(0, 0, 0); //
write2lcd(0, 0, 0); //
write2lcd(0, 0, 0); //
write2lcd(0, 0, 17); //
write2lcd(0, 0, 25); //
write2lcd(0, 0, 21); //
write2lcd(0, 0, 19); //
write2lcd(0, 0, 17); //
//

write2lcd(0, 0, 0); //
write2lcd(0, 0, 0); //
write2lcd(0, 0, 0); //
write2lcd(0, 0, 20); //
write2lcd(0, 0, 20); //
write2lcd(0, 0, 20); //
write2lcd(0, 0, 20); //
write2lcd(0, 0, 23); //
//

write2lcd(0, 0, 0); //
write2lcd(0, 0, 0); //
write2lcd(0, 0, 0); //
write2lcd(0, 0, 14); //
write2lcd(0, 0, 8); //
write2lcd(0, 0, 14); //
write2lcd(0, 0, 2); //
write2lcd(0, 0, 14); //
//

write2lcd(0, 0, 0); //
write2lcd(0, 0, 0); //
write2lcd(0, 0, 0); //
write2lcd(0, 0, 14); //
write2lcd(0, 0, 8); //
write2lcd(0, 0, 12); //
write2lcd(0, 0, 8); //
write2lcd(0, 0, 14); //
//

write2lcd(0, 0, 0); //
write2lcd(0, 0, 0); //
write2lcd(0, 0, 0); //
write2lcd(0, 0, 17); //
write2lcd(0, 0, 25); //
write2lcd(0, 0, 21); //
write2lcd(0, 0, 19); //
write2lcd(0, 0, 17); //
//

write2lcd(linelpos0O, O,

111 1

11
I

_—R R e
_— R R

111
111

111
ARRN

111
11

111
Il

11 1
111
1 11
1 1

I
0);

143

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

write2lcd(0, ™ Design by: ", 0);
write2lcd(line2posO, 0, 0);
write2lcd(0, ™ ", 0);

for(i=0; i<=7; i++)
write2lcd(0, 0, 1);

} 7/ choice==2

return;

}

rs232rx.vhd

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

-- File > rs232rx.vhd

-- Author : Geir Nilsen { geirni@ifi.uio.no }
-- Created : Dec 15 2003

-— Description:

- This controller is designed to work with the following parameters:
- 100 MHz input clock

- Baud: 115200, 9600

- Parity: None

-— Data Bits: 8

-— Stop Bits: 1

- Calculate ns/cycle @ 115200 baud
- (1 s) /7 (115200 cycles) = 8680.55 ns

-— Ideel 10 cycles = 86805.55 ns

- Actual 10 cycles = 86800 => halfperiod = 4340 ns
- Difference = 5.55 ns

- Calculate ns/cycle @ 9600 baud

- (1 s) /7 (9600 cycles) = 104166.66 ns

- Ideel 10 cycles = 1041666.66 ns

- Actual 10 cycles = 1041600 ns => halfperiod = 52080 ns

-— Difference 66.66 ns

- baud divisor halfperiod (halfperiod must be even (see stopbit))
- 115200 1 434

- 9600 12 5208

library ieee;

use ieee.std_logic_1164._all;

use ieee.std_logic_unsigned.all;
use leee.std logic_arith.all;

entity rs232rx is

generic(
divisor > Integer := 1;
half > integer = 434
);
port
clk : In std_logic; -- 100 MHz
rst > in std_logic;
rxd > in std_logic; -- Bit to FPGA from DP9

144

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

rx_data
rx_data_rdy

);

end rs232rx;

out std_logic

architecture rs232rx of rs232rx is
type rs232_type is (idle,
startbit,

bitO, bitl, bit2, bit3, bitd, bit5, bit6, bit7,

stopbit
);

signal rx_current, rx_next : rs232_type;

signal rx_shift_en
signal rx_data reg
signal rx_data_rdy_ sig
signal rx_data_rdy reg

std_logic;

std_logic;
std_logic;

type rxdatardy type is (rxdatardy idle,
rxdatardy wait);

out std_logic_vector(7 downto 0); -- Bits from rxd
-— "1" when rx_data is ready

std_logic_vector(7 downto 0);

signal rxdatardy current, rxdatardy next : rxdatardy_type;

signal rx _data rdy sig2 : std logic;

signal half _period

integer range 1 to divisor * half;

signal cnt : Integer range 1 to divisor * half;

signal rs232clk std_logic;

signal rx_start_reg : std _logic;

rx_data <= rx_data_regq;
rx_data rdy <= rx_data_rdy reg;

rx_FSM:process (rx_current, rxd, rx_start_reqg)
begin

rx_data_rdy_sig <= "07;
rx_shift_en <= "0°";
half _period <= divisor * half;

case rx_current is

when idle => -- Wait for startbit

half_period <= 1;
if (rx_start reg="1") then
rx_next <= startbit;

else
rx_next <= idle;

end if;
when startbit => rx_next <= bitO;
when bitO => rx_next <= bitl; rx_shift_en
when bitl => rx_nhext <= bit2; rx_shift_en
when bit2 => rx_nhext <= bit3; rx_shift_en
when bit3 => rx_next <= bit4; rx_shift_en
when bit4 => rx_next <= bit5; rx_shift_en
when bith => rx_next <= bit6; rx_shift_en

145

<=
<=
<=
<=
<=

e
-
-
e
-1-
-1-:

108 when bit6 => rx_next <= bit7; rx_shift en <= "1°7;

109 when bit7 => rx_nhext <= stopbit; rx_shift _en <= "17;

110

111 when stopbit =>

112 - Skip to idle halfway, to be sure not to miss the next startbit
113 half period <= (divisor * half) / 2;

114 rx_data_rdy_sig <= "17;

115 rx_next <= idle;

116

117 when others =>

118 rx_next <= idle;

119 end case;

120 end process;

121

122 —— T e e e
123

124 rxdatardy FSM: process (rxdatardy_current, rx_data rdy_sig)
125 begin

126

127 rxdatardy next <= rxdatardy_current;

128 rx_data_rdy_sig2 <= "07;

129

130 case rxdatardy current is

131

132 when rxdatardy idle =>

133 if (rx_data_rdy sig="1") then

134 rx_data_rdy_sig2<="1";

135 rxdatardy next <= rxdatardy_wait;
136 else

137 rxdatardy next <= rxdatardy_idle;
138 end i1f;

139

140 when rxdatardy wait =>

141 if (rx_data_rdy sig="1") then

142 rxdatardy next <= rxdatardy_ wait;
143 else

144 rxdatardy next <= rxdatardy_idle;
145 end if;

146

147 end case;

148 end process;

149

150 T e
151

152 rx_start_register: process (rst, clk, rxd, rx_current)

153 begin

154 if (rst="0") then

155 rx_start reg <= "0%;

156 elsif (rising_edge(clk)) then

157 if (rx_current=idle and rxd="0") then
158 rx_start reg <= "1%;

159 elsif (rx_current=bit7) then

160 rx_start reg <= "0%;

161 end if;

162 end if;

163 end process;

164

165 rx_data_shiftregister: process (rst, rs232clk, rx_shift _en, rx_data_reg)

166 begin
167 if (rst="0") then
168 rx_data_reg <= (others => "0%);

146

169 elsif (Ffalling_edge(rs232clk)) then -- Make sample halfway

170 ifT (rx_shift_en="1") then
171 rx_data reg <= rxd & rx_data reg(7 downto 1);
172 end if;

173 end if;

174 end process;

175

176 rx_data_rdy register: process (rst, clk, rx data rdy sig2)

177 begin

178 if (rst="0") then

179 rx_data_rdy_reg <= "07;

10 elsif (rising_edge(clk)) then

181 if (rx_data_rdy sig2="1") then
182 rx_data_rdy reg<="1";

183 else

184 rx_data_rdy_reg <= "07;

185 end i1f;

186 else

187 rx_data_rdy reg <= rx_data rdy reg;

188 end if;
189 end process;

191 rx_stateRegister: process (rst, rs232clk, rx_next)

192 begin

193 if (rst="0") then

194 rx_current <= idle;

195 elsif (rising_edge(rs232clk)) then
196 rx_current <= rx_next;

197 end if;

198 end process;

199

200 rxdatardy statereg: process (clk,rst)

201 begin

202 if (rst="0") then

203 rxdatardy current <= rxdatardy_idle;

20a elsif (rising_edge(clk)) then

205 rxdatardy current <= rxdatardy_ next;

206 else

207 rxdatardy_ current <= rxdatardy_current;

208 end if;

200 end process;

210

22 5 e
212

213 rs232clk_generator: process (clk, rst, half_period)

214 begin

215 if (rst = "0") then

216 cnt <= 1;

217 rs232clk <= "1%;

218 elsif (rising_edge(clk)) then
219 if (cnt = half_period) then
220 rs232clk <= not rs232clk;
221 cnt <= 1;

222 else

223 cnt <= cnt + 1;

224 end i1f;

225 end if;

226 end process;
227

228 end rs232rx;

147

rs232tx.vhd

001 ——

o2 —— File > rs232tx.vhd

oos —— Author : Geir Nilsen { geirni@ifi.uio.no }

oosa —— Created : Dec 15 2003

005 ——

oos —— Description:

007 —- This controller is designed to work with the following parameters:

o0g —— 100 MHz input clock

009 —— Baud: 115200, 9600

010 —— Parity: None

011 —- Data Bits: 8

012 —- Stop Bits: 1

013 - — T e e e
014 —— Calculate ns/cycle @ 115200 baud

015 —— (1 s) /7 (115200 cycles) = 8680.55 ns

016 ——

017 —- Ideel 10 cycles = 86805.55 ns

018 —— Actual 10 cycles = 86800 => halfperiod = 4340 ns

019 —— Difference = 5.55 ns

020 ——

021 —— Delay must be 1 clock cycle due to the difference

022 —- 1 extra clock cycle is added to give the UART at the reciving end time to
023 —— prepare for the next byte

024 —— => 1 cycle delay per halfperiod

025 T T T T T T T
026 —— Calculate ns/cycle @ 9600 baud

027 —- (1 s) /7 (9600 cycles) = 104166.66 ns

028 ——

029 —— Ideel 10 cycles = 1041666.66 ns

030 —- Actual 10 cycles = 1041600 ns => halfperiod = 52080 ns

031 —-— Difference = 66.66 ns

032 ——

033 —— Delay must be 7 clock cycles due to the difference.

034 —— 1 extra clock cycle i1s added to give the UART at the reciving end time to
035 —— prepare for the next byte

036 —-— => 4 cycles delay per halfperiod

037, —— T e
038 —— baud divisor halfperiod delay

039 —— 115200 1 434 1

040 —— 9600 12 5208 4

041 ——

042

oa3 library ieee;

oaa Use ieee.std_logic_1164._all;

oss use ieee.std_logic_unsigned.all;
oa6 Use ideee.std_logic_arith.all;

047

oss entity rs232tx is

oa9 generic(

050 divisor : integer := 1; -- 115200 baud

051 half > integer = 434

052);

053 port

054 clk : In std_logic; -- 100 MHz

055 rst - in std_logic;

056 t>x_rdy : out std_logic; -- Ready to send data to DP9
057 tx _start : in std logic; -— Start sendig tx_data

058 tx_data - in std _logic vector(7 downto 0); -- Byte to write to DP9

059 -— (from FPGA) using txd

148

060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

txd : out std_logic

);
end rs232tx;

architecture rs232tx of rs232tx

type rs232_type is (idle,
startbi

t,

-- Bit from FPGA to

is

bitO, bitl, bit2, bit3, bit4, bit5, bit6, bit7,

stopbit
)

signal tx_current, tx_next : rs232_type;

signal tx_start_reg : std _logic;

signal tx _data reg
signal tx_shift_en
signal tx_load

std_logic_vector(9 downto 0);
std_logic;
std_logic;

-- ad hoc (find max-delay) Make delay generic ?
signal delay . Integer range 1 to 10;

signal half_period

integer range 1 to (divisor * half) + 10;

signal cnt > integer range 1 to (divisor * half) + 10;

signal rs232clk
begin

txd <= tx_data_reg(0);

delay <= 1 when divisor

std_logic;

1 else -- 115200 baud
12 else —- 9600 baud

-- Add delay(s) to other baudrates

rs232_FSM: process (tx_current, tx start, tx start _reg)

4 when divisor
4;
begin
t>x_rdy <= "0°";
tx_load <= "07;

tx_shift_ en <= "1°

half_period <= divisor * half;

case tx_current 1Is

when idle =>
half_period <= 1;
tx_rdy <= "1°%;
tx_shift _en <= "0";

if (tx_start_reg="1") then

tx_load<="1";
txX_next <= startbit;

else
tx_next <= idle;

end if;
when startbit => tx_next
when bitO => tx_nhext
when bitl => tx_next
when bit2 => tx_hext
when bit3 => tx_next
when bit4 => tx_next
when bits => tXx_nhext
when bit6 => tx_next
when bit7 => tx_hext

<=

<=
<=
<=
<=
<=
<=

bitO;
bitl;
bit2;
bit3;
bit4;
bit5;
bit6;
bit7;
stopbit;

149

DP9

121
122 when stopbit =>

123 -- Wait a few ns extra to ensure that the reciver is ready for a new byte
124 half _period <= (divisor * half) + delay;

125 tx_next <= idle;

126

127 when others =>

128 tx_next <= idle;

129 end case;

130 end process;

131

132 tx_start_register: process(rst, clk, tx_start, tx_current)

133 begin

134 if (rst="0") then

135 tx_start_reg <= "0";

136 elsif (rising_edge(clk)) then

137 ifT (tx_current=idle and tx_start="1") then
138 tx_start_reg <= "17;

139 elsif (tx_current=bit7) then

140 tx_start_reg <= "0%;

141 end i1f;

142 end if;

143 end process;

144

145 tXx_data_ShiftRegister: process (rst, rs232clk, tx_load, tx _current, tx_data)

146 begin

147 if (rst = "0") then

148 tx _data _reg <= (others => "1%);

129 elsif (tx_load="1") then

150 tx _data reg(9) <= "1°7;

151 tx_data_reg(8 downto 1) <= tx_data;

152 tx_data _reg(0) <= "0";

153 elsift (rising_edge(rs232clk)) then

154 if (tx_current=idle and tx_start="0") then
155 tx_data reg(0) <= "1°7;

156 elsif (tx_shift_en="1") then

157 tx_data_reg <= "1" & tx_data_reg(9 downto 1);
158 end if;

159 end if;

160 end process;

161

162 rs232_stateRegister: process (rst, rs232clk, tx_next)

163 begin

164 if (rst="0") then

165 tx_current <= idle;

166 elsif (rising_edge(rs232clk)) then
167 t>@_current <= tx_nhext;

168 end if;

160 end process;

170

i1 rs232clk_generator: process (clk, rst, half _period)

172 begin

173 if (rst = "0") then

174 cht <= 1;

175 rs232clk <= "1-;

176 elsif (rising_edge(clk)) then
177 if (cnt = half_period) then
178 rs232clk <= not rs232clk;
179 cht <= 1;

180 else

181 cnt <= cnt + 1;

150

182 end i1f;
183

184 end if;

185 end process;
186

187

188 end rs232tx;

devboard.vhd

001 ——

o2 -—- File : devboard.vhd

oos —— Author: Geir Nilsen { geirni@ifi.uio.no }

ooa —— Created: Mars 3 2004

005 ——

e —— Description:

007 —- Test of components on Development Board. These components are external
o0g —— to the FPGA. Use ids.c as a user interface to this design.

009 ——

010

o library ieee, unisim;

012 Uuse ieee.std_logic_1164._all;
013 use unisim.vcomponents.all;
014 use work.components.all;

015

o1e entity devboard is

017 generic(

018 longestPattern : integer := 240;--——————-—- Fix: add this file to cam_vhdl.pl
019 addrBits : integer = 3

020);

021 port

022 i_clk - in std_logic; -- 100 MHz

023 rst - in std_logic;

024 Icd _en : out std _logic; -- LCD Enable Signal

025 -- Goes to LCD-display. lcd _data out(8): LCD Register Select Signal
026 lcd_data_out : out std_logic_vector(8 downto 0);

027 push - in std_logic vector(l to 3);

028 dip - Iin std_logic vector(8 downto 1);

029 led : out std _logic vector(1l to 4);

030 rxdl : in std _logic; -— Data in 1 (COM1)

031 txdl : out std_logic; -- Data/Instructions out (debug)
032 rxd2 > in std_logic -- Instruction in (COM2)

033 —— txd2 : out std _logic -- Data/Instructions out

034);

035 end devboard;
036
037 architecture devboard of devboard is

o3s signal clk : std _logic;
o9 signal clk _buf : std _logic;
040

041 -- Data transfer through COM1

o2 signal rx_datal

043 signal rx_data rdyl

044

s signal tx_rdyl

oas signal tx_startl

047 signal tx _data regl

048

049 -— Instructions through COM2
o0 signal rx_data2

s1 signal rx_data_reg2

std_logic_vector(7 downto 0);
std_logic; —-- vector(l to 2)

std_logic; -- vector(1l to 2)
std_logic; -- vector(1l to 2)
std_logic_vector(7 downto 0);

std_logic_vector(7 downto 0);
std_logic_vector(7 downto 0);

151

052 signal rx_data_reg2 res : std_logic;

os3 signal rx_data_rdy2 : std_logic;

054

os5 —— signal tx_rdy2 : std _logic;

os6 —— signal tx_start2 : std_logic;

os7 —— signal tx data reg2 : std_logic_vector(7 downto 0);

058

oss signal lcd_data_in_shiftreg std_logic_vector(8 downto 0);

os0 signal lcd_start_sig : std _logic;

o1 signal lcd _start reg : std _logic;

62 signal lcd_rdy : std_logic;

063

064 -— Wires to pushButtonRegisters

oes signal pB wire : std _logic_vector(l to 2);
066 -- pushButtonRegisters

67 signal pB_reg
oes signal dip_reg
069

oo type main_FSM_type is (idle, pushl st, push_st, lcd start st);

o1 signal main_curr, main_next : main_FSM type;

072

oz signal led4_reg : std_logic;

o7a begin

075

076 —— =TT e
o077 —— FSM

078

o9 main_FSM: process(main_curr, pB_reg, push(3), rx _data reg2, lcd rdy, tx rdyl)

os0 begin

081

std_logic_vector(l to 2);
std_logic_vector(7 downto 0);

082 Icd_start_sig <= "07;
083 rx_data reg2 res <= "0";
084 t>x_startl <= "0%;
085 —— Tx_start2 <= "0°;

086
087 case main_curr is
088

089 when idle =>

090 if (pB_reg(1)="0") then

091 main_next <= pushl_st;

092 elsift ((pB_reg(2)="0" or push(3)="0") and lcd_rdy="1" and tx_rdyl="1") then
093 main_next <= push_st;

094 elsif (rx_data reg2=""00000010") then -- Instruction Register: LCD start
095 main_next <= lcd_start_st;

096 else

097 main_next <= idle;

098 end if;

099

100 when pushl st =>

101 lcd_start sig <= "1°7;

102 main_next <= idle;

103

104 when push_st =>

105 lcd_start_sig <= "1"; -- Display byte from DIP on LCD
106 tx_startl <= "1"; -- Send byte to PC

107 main_next <= idle;

108

109 when lcd_start_st =>

110 lcd_start_sig <= "1°;

111 rx_data reg2 res <= "1"; -- Clear Instruction Register
112 main_next <= idle;

152

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

160
161
162
163
164
165
166
167
168
169
170
171
172
173

when others => null;
end case;
end process;

-— Instruction Register In, COM2

-- 0 = NOP - Idle/Stop/Break

-— 1 = LCD data shift left - Shift enable. lcd _data_in_shiftregister
-- 2 = LCD start - Set lcd_start_reg high (Self-clearing)
-- 4 = led4on

-- 3 = led4off

rx_data2_register: process(rst, clk, rx _data reg2 res, rx _data rdy2)

begin

if (rst="0" or rx _data reg2 res="1") then

rx_data reg2 <= (others => "0%);
elsif(rising_edge(clk)) then
if (rx_data_rdy2="1") then
rx_data reg2 <= rx_data2?;
end if;
end if;
end process;

—- Instruction/Data Out, COM2

--tx_data reg2 register: process(rst, clk)

--begin
-— 1F (rst="0") then

-— tx_data reg2 <= (others => "0%);

-- elsifT (rising_edge(clk)) then

- tx _data reg2 <= ""00000" & cam wordaddr_out reg;---------—-- max 255

-- end if;
--end process;

-— Debug Out, CoMm1
tx_datal register: process(rst, clk)
begin
if (rst="0") then
tx_data _regl <= (others => "0%);

elsif (rising _edge(clk) and (pB_reg(2)="0" or push(3)="0")) then

tx_data_regl <= dip;
end if;
end process;

main_FSM_register: process(rst, clk, main_next)

begin
if (rst="0") then
main_curr <= idle;
elsif (rising_edge(clk)) then
main_curr <= main_next;
end if;
end process;

push_register: process (clk, rst, pB wire)

begin
if (rst="0") then
pB_reg <= (others => "1%);
elsif (rising_edge(clk)) then
pB_reg <= pB wire;

153

174
175
176
177
178
179
180
181
182
183
184
185

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

end if;
end process;

dip_register: process (clk, rst, dip)
begin
if (rst="0") then
dip_reg <= (others => "1%);
elsif (rising_edge(clk)) then
dip_reg <= dip;
end if;
end process;

Icd_data_in_shiftregister: process(rst, clk, rx data rdyl, rx _data reg2)
begin
if (rst="0") then
Icd_data_in_shiftreg <= (others => "0%);
elsif (rising_edge(clk)) then
iT (rx_data_rdyl="1" and rx_data_reg2=""00000001'"") then
Icd _data_in_shiftreg <= lcd _data_in_shiftreg(0) & rx datal;
elsift (pB_reg(1)="0") then
Icd_data_in_shiftreg(8 downto 0) <= "0" & dip_reg;
elsit (pB_reg(2)="0" or push(3)="0") then
Icd_data_in_shiftreg(8 downto 0) <= "1" & dip_reg;
end if;
end if;
end process;

Icd_start_register: process(rst, clk, lcd_start_sig)
begin
if (rst="0") then
Icd_start _reg <= "07;
elsif (rising_edge(clk)) then
if (Icd_start_sig="1") then
lcd start reg <= "17;
else
Icd_start _reg <= "07;
end if;
end if;
end process;

-- Assign debouncer to pushButtons 1 and 2
pButton_inst_X: for i in 1 to 2 generate

begin
pButton_inst: pButton
port map (
clk = clk,
rst => rst,

pButtonln => push(i),
pButtonOut => pB wire(i)
)

end generate;

clk _in: IBUFG
port map (
1 => i_clk,
0 => clk_buf
)

clk out: BUFG
port map (

154

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

287
288
289
290
291
292
293
294
295

1 => clk_buf,
0 => clk
)
lcd inst: lcd
port map (
clk = clk,
rst => rst,

lIcd _data_in => lcd _data_in_shiftreg,
lIcd _data out => lcd _data out,

Icd _en => lcd_en,
lcd_rdy => lcd_rdy,
lcd_start => lcd_start_reg
);

rs232rx_inst _dataln: rs232rx
-- generic map(divisor => 1, half => 2)

port map (
clk => clk,
rst = rst,
rxd => rxdl,
rx_data => rx_datal,
rx_data rdy => rx_data_rdyl
)

rs232tx_inst_debugOut: rs232tx
-— generic map(divisor => 1, half => 1)

port map (
clk => clk,
rst = rst,

tx_rdy => tx_rdyl,
tx_start => tx_startl,
tx_data => tx_data_regl,
txd => txdl

)

rs232rx_inst_instructionln: rs232rx
-— generic map(divisor => 1, half => 2)

port map (
clk = clk,
rst => rst,
rxd => rxd2,
rx_data => rx_data2,
rx_data rdy => rx_data_rdy2
)

--rs232tx_inst_out: rs232tx
-— generic map(divisor => 1, half => 1)

-— port map (
- clk = clk,
-— rst = rst,

- t>x_rdy => tx_rdy2,
- tx_start => tx_start2,
- tx_data => tx_data_reg2,

—-— t>xd => txd2
-)
led flash_inst _dataln: led_flash
port map (
clk = clKk,
rst => rst,

155

-- Simulation

-- Simulation

-- Simulation

-- Simulation

296 sig_in => rx_data_rdyl,
297 led_reg => led(1)

208);

299

so0 led_Flash_inst_dataOut: led flash

301 port map (

302 clk => clk,

303 rst => rst,

304 sig_in => tx_startl,
305 led _reg => led(2)

306);

307
sos led_flash_inst_instructionln: led_flash
309 port map (

310 clk => clk,

311 rst => rst,

312 sig_in => rx_data_rdy2,
313 led_reg => led(3)

314);

315
aie ——led_Fflash_inst_instructionOut: led flash

a7 —— port map (

318 —— clk = clk,

319 —— rst => rst,

320 —— sig_in => tx_start2,
321 —— led reg => led(4)

322 —-);

a2z —-led(4) <= "17;

324

s2s led(4) <= led4 _reg;

326

s27 led4_register: process(rst, clk, rx data rdy2, rx_data reg2)

328 begin

329 if (rst="0") then

330 led4 reg <= "1°;

sa1 elsif (rising_edge(clk) and rx_data_rdy2="1%) then
332 if (rx_data2=""00000011'") then -- On

333 led4 reg <= "0";

334 elsift (rx_data2='"00000100'"") then -- OFf

335 led4 reg <= "1°;

336 end i1f;

337 end if;

338 end process;
339

340

sa1 end devboard;

ids128.vhd

001 ——

o2 —— File > 1ds128.vhd

oos —— Author : Geir Nilsen { geirni@ifi.uio.no }

ooa —— Created: Mars 3 2004

005 ——

e —— Description:

007 —— Top level module of a cam of 128 words. The cam-files must be configured
008 —— to 128 words. To change this file to match other cam"s a change must be
009 —— made in the tx data2 register. The current version of this design can
010 —— take at most 128 words. Use ids.c for a user interface to this design.

011 ——
012

156

oz library ieee, unisim;
use leee.std logic_1164._all;
use unisim.vcomponents.all;
use work.components.all;

use work.cam components.all;

014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073

entity id

generic
longe
addrB
);

port
i_clk
rst
led4
rxdl
rxd2
txd2

)

end ids;

architect
signal
signal

s is
(
stPattern : integer := 256;--———-——-—- Fix: add this file to cam_vhdl.pl
its : integer = 7
> in std_logic; -- 100 MHz
- in std_logic;
: out std_logic;
> in std_logic;
> in std_logic; -- Instruction in (COM2)
: out std_logic -- Data/lnstructions out
ure ids of ids is
clk > std_logic;
clk _buf : std _logic;

-- Data transfer through COM1

signal
signal

rx_datal
rx_data_ rdyl

std_logic_vector(7 downto 0);
std_logic;

-— Instructions through COM2

signal
signal
signal

signal
signal
signal
signal
signal
signal

signal

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

rx_data2
rx_data reg2
rx_data_ rdy2

t>_rdy2
t©_start2
tx_data reg2
tx_data2
tx2_start_sig
tx2_send_sig

rx_data reg2_res

cam_data_shiftreg
cam_data_shift _en
cam_wordaddr_in_shiftreg
cam_addr_shift_en
cam_wordaddr_out

cam_write_rdy

cam _write_en_sig
cam_write_en_reg
cam_match_en_reg
cam_match_en_sig

cam_match

std_logic_vector(7 downto 0);
std_logic_vector(7 downto 0);
std_logic;

std_logic;
std_logic;
std_logic_vector(15 downto 0);
std_logic_vector(7 downto 0);
std_logic;
std_logic;

std_logic;

std_logic_vector(longestPattern-1 downto 0);
std_logic;

std_logic_vector(addrbits-1 downto 0); --NBI!
std_logic;

std_logic_vector(addrbits-1 downto 0);
std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

type write FSM_type is (idle, write_st);

signal write_curr, write next : write FSM_type;

type cam _match_FSM_type is (match_off _st, match_on_st, wait_stl, wait_st2);
signal match_curr, match_next : cam match_FSM_type;

type data FSM_type is (shift _off, shift on);

signal data_curr, data_next : data FSM_type;

157

074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102

129
130
131
132
133
134

type addr_FSM_type is (shift_off, shift_on);
signal addr_curr, addr_next : addr_FSM_type;
type tx2_FSM_type is (idle, bytel, byte2);
signal t>x2_curr, t~x2_next : tx2_FSM_type;

signal tx2_start _reg : std_logic;
begin

tx2_start_register: process(rst, clk, tx2_start_sig)
begin
if (rst="0") then
t>@2_start_reg <= "0°;
elsif (rising_edge(clk)) then
if (tx2_start_sig="1") then
t>x2_start_reg <= "1°7;
else
t™>@2_start_reg <= "0°;
end if;
end if;
end process;

tx_addr_FSM: process(tx2 _curr, tx2_start reg, tx _rdy2) -- Send 2 bytes to PC
begin
t>x_start2 <= "0°; -- tx_data2 <= tx _data reg2(7 downto 0)
tx2_send_sig <= "0";
case tx2_curr is

when idle =>
if (tx2_start _reg="1") then
tx2_next <= bytel;
else
t>x2 _next <= idle;
end if;

when bytel =>
if (tx_rdy2="1") then
tx_start2 <= "1°7;
tx2_next <= byte2;
else
tx2_next <= bytel;
end if;

when byte2 =>
tx2_send _sig <= "1"; -- tx data2 <= tx data reg2(15 downto 0)
ifT (tx_rdy2="1") then
t@_start2 <= "1°7;
t>x2 _next <= idle;
else
tx2_next <= byte2;
end if;

when others => null;
end case;
end process;

tx _data2 <=

tx_data reg2(7 downto 0) when tx2_send _sig="0" else
tx_data_reg2(15 downto 8) when tx2_send_sig="1";

158

135
136 tx_data2_register: process(rst, clk)

137 begin

138 if (rst="0") then

139 tx_data _reg2 <= (others => "0%);

120 elsif (rising_edge(clk) and cam_match="1") then

141 --tx_data_reg2 <= '"0000000000000* & cam_wordaddr_out; -- Max 8 words
142 --tx_data_reg2 <= ""000000000000" & cam_wordaddr_out; -- Max 16 words
143 -—tx_data reg2 <= "00000000000" & cam _wordaddr_out; -- Max 32 words
144 --tx_data_reg2 <= *""0000000000*" & cam_wordaddr_out; -- Max 64 words
145 tx_data_reg2 <= ""000000000" & cam_wordaddr_out; -- Max 128 words
146 --tx_data_reg2 <= "00000000" & cam_wordaddr_out; -- Max 256 words
147 -—-tx_data _reg2 <= '"0000000" & cam_wordaddr_out; -- Max 512 words
148 -—-tx_data reg2 <= "000000" & cam_wordaddr_out; -- Max 1024 words
149 --tx_data_reg2 <= 00000 & cam_wordaddr_out; -- Max 2048 words

150 end i1f;

151 end process;

152

153 cam_match_FSM: process(match_curr, rx_data reg2, cam_match, tx_rdy2,
154 rx_data_rdyl)

155 begin

157 tx2_start_sig <= "0";

158 cam_match_en_sig <= "0";
159

160 case match_curr is

161

162 when match_off st =>

163 if (rx_data_reg2="00000110"") then
164 match_next <= match_on_st;

165 else

166 match_next <= match_off_st;

167 end if;

168

169 when match_on_st =>

170 cam_match_en_sig <= "17;

171 if (rx_data_reg2="00000111") then
172 match_next <= match_off _st;

173 elsif (cam_match="1" and tx_rdy2="1") then
174 tx2_start_sig <= "17;

175 match_next <= wait _stl;

176 else

177 match_next <= match_on_st;

178 end if;

179

180 when wailt _stl =>

181 if (rx_data reg2=""00000111") then
182 match_next <= match_off_st;

183 elsif (rx_data rdyl="1") then

184 match_next <= wait_st2;

185 else

186 match_next <= wait_stl;

187 end if;

188

189 when wait_st2 =>

190 cam_match_en_sig <= "17;

101 ifT (rx_data reg2=""00000111") then
192 match_next <= match_off_st;

193 else

194 match_next <= match_on_st;

105 end i1f;

159

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

when others => null;
end case;
end process;

cam_data_shift_FSM: process(data_curr, rx_data_reg2)

begin
cam_data_shift _en <= "0";
case data_curr is
when shift _off =>
iT (rx_data_reg2=""00000011")
data _next <= shift_on;
else
data_next <= shift _off;
end if;
when shift_on =>
cam_data _shift en <= "1°7;
if (rx_data_reg2=""00000111"")
data_next <= shift _off;

else
data _next <= shift_on;
end if;
when others => null;
end case;

end process;

cam _write_FSM: process(write_curr, rx _data reg2,

tx_rdy2)
begin
rx_data reg2 res <= "0";
cam_write_en_sig <= "07;
case write_curr is
when idle =>
if (rx_data_reg2="00000101"")
write _next <= write_st;
else
write_next <= idle;
end if;
when write_st =>
it (cam write_rdy="1") then
cam_write_en_sig <= "17;

then

then

then

cam_write_rdy, cam_match,

rx_data reg2 res <= "1"; -- Clear Instruction Register

end if;
write_next <= idle;
when others => null;
end case;
end process;

cam_addr_shift _FSM: process(addr_curr, rx_data reg2)

begin
cam_addr_shift en <= "0°;
case addr_curr is
when shift_off =>
if (rx_data_reg2="00000100"")
addr_next <= shift_on;
else
addr_next <= shift_off;
end if;
when shift _on =>
cam_addr_shift en <= "17;
iT (rx_data_reg2=""00000001")

then

then

160

257
258

260
261
262
263
264
265
266
267
268

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

addr_next <= shift_off;

else
addr_next <= shift_on;
end if;
when others => null;
end case;

end process;

tx_addr_FSM_StateRegister: process(rst, clk)
begin
if (rst="0") then
t>x2 _curr <= idle;
elsif (rising_edge(clk)) then
t™@2_curr <= tx2_next;
end if;
end process;

cam_addr_shift_FSM_StateRegister: process(rst, clk, addr_next)
begin
if (rst="0") then
addr_curr <= shift_off;
elsif (rising_edge(clk)) then
addr_curr <= addr_next;
end if;
end process;

cam_data_shift FSM_StateRegister: process(rst, clk, data next)
begin
if (rst="0") then
data_curr <= shift off;
elsif (rising_edge(clk)) then
data_curr <= data_next;
end if;
end process;

cam_match_FSM_StateRegister: process(rst, clk, match_next)
begin
if (rst="0") then
match_curr <= match_off _st;
elsif (rising_edge(clk)) then
match_curr <= match_next;
end if;
end process;

cam_write FSM_StateRegister: process(rst, clk, write_next)
begin
if (rst="0") then
write_curr <= idle;
elsif (rising_edge(clk)) then
write_curr <= write_next;
end if;
end process;

-— Instruction Register In, COM2

-- 3 = CAM data shift LSB - ShiftEnableOn. cam_data_shiftreg

-- 8 - ShiftEnableOff

-- 4 = CAM addr - Shift enable on. Set cam_wordaddr_in

-1 - Shift enable off

-- 5 = CAM write - Set cam write_en_reg high (Self-clearing)

-- 6 = CAM match on - Shift enable cam_data_reg. Recv cam_data and macth

161

ais -—— 7 = CAM match off
319
s20 cam_data_shiftregister: process(rst, rx _data rdyl, cam data _shift_en)

s21 begin

322 if (rst="0") then

323 cam_data_shiftreg <= (others => "0%);

s2a elsif (rising_edge(rx_data rdyl)) then ---———-----—-—-
325 ifT (cam_data_shift_en="1") then

326 cam_data_shiftreg <=

327 cam_data_shiftreg((longestPattern-1)-8 downto 0) & rx _datal;

328 end i1f;

329 end i1f;

330 end process;

331

332 cam_wordaddr_in_shiftregister: process(rst, clk, rx _data rdyl, cam addr_shift_en)

333 begin

334 if (rst="0") then

335 cam_wordaddr_in_shiftreg <= (others => "0%);

s36 elsif (rising _edge(rx_data rdyl)) then -
337 it (cam_addr_shift _en="1") then

338 -- For use with CAM that has words > 256:

339 -—cam_wordaddr_in_shiftreg <= cam wordaddr_in_shiftreg(0) & rx datal;----—-
340 -- For use with CAM that has words <= 256:

341 cam_wordaddr_in_shiftreg <= rx_datal(addrbits-1 downto 0);

342 end if;

343 end i1f;

342 end process;

345

346 cam_write_en _register: process(rst, clk, cam_write _en_sig)

347 begin

348 if (rst="0") then

349 cam _write_en_reg <= "07;

sso elsif (rising_edge(clk)) then

351 if (cam_write_en_sig="1") then
352 cam write_en _reg <= "1%;

353 else

354 cam _write_en_reg <= "07;

355 end if;

356 end if;

357 end process;

358

ss9 cam_match_en_register: process(rst, clk, rx_data reg2)

se0 begin

361 if (rst="0") then

362 cam_match _en_reg <= "07;

ss3 elsif (rising_edge(clk)) then

364 ifT (cam_match_en_sig="1") then
365 cam_match_en_reg <= "1°%;

366 else

367 cam_match _en_reg <= "07;

368 end i1f;

369 end if;

s70 end process;

371

a2 rx_data2 register: process(rst, clk, rx _data reg2 res, rx_data rdy2)

s73 begin

374 if (rst="0" or rx _data reg2 res="1") then
375 rx_data reg2 <= (others => "0%);

ste elsif(rising_edge(clk)) then

377 if (rx_data_rdy2="1") then

378 rx_data_reg2 <= rx_data2;

162

379 end i1f;

380 end i1f;

ss1 end process;

382

383 —TT T
assa —-— Instanitiations

385

sse cam_top_inst: cam_top

387 port map (

388 clk => clk,

389 rst => rst,

390 cam_data => cam_data_shiftreg,

391 cam_wordaddr_in => cam_wordaddr_in_shiftreg,
392 cam_wordaddr_out => cam_wordaddr_out,

393 cam _write_rdy => cam _write_rdy,

394 cam_write_en => cam _write_en_reg,

395 cam_match_en => cam_match_en_reg,

396 cam_match => cam_match

397);

398
aso clk_in: 1BUFG
400 port map (

401 1 => i_clk,
402 0 => clk _buf
403);

404

405 clk_out: BUFG
406 port map (

407 I => clk_buf,
408 0 => clk
409);

410
a11 rs232rx_inst_dataln: rs232rx

412 —-generic map(divisor => 1, half => 2) -- Simulation
413 port map (

414 clk => clk,

415 rst => rst,

416 rxd => rxdl,

217 rx_data => rx_datal,

418 rx_data _rdy => rx_data rdyl

419);

420

421 rs232rx_inst_instructionln: rs232rx

422 —-generic map(divisor => 1, half => 2) -- Simulation
423 port map (

424 clk => clk,

425 rst => rst,

426 rxd => rxd2,

427 rx_data => rx_data2,

428 rx_data_rdy => rx_data rdy2

429);

431 rs232tx_inst_out: rs232tx

432 —-generic map(divisor => 1, half => 1) -- Simulation
433 port map (

434 clk => clk,

435 rst => rst,

436 tx_rdy => tx_rdy2,

437 tx_start => tx_start2,

438 tx_data => tx_data2,

439 t~d => txd2

163

440
441
442
443
444
445
446
447
448
449
450

);

led_flash_inst_instructionOut: led_flash

port map (
clk = clk,
rst => rst,
sig_in => tx_start2,
led _reg => led4
)
end ids;

components.vhd

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

-- File

: components.vhd
-- Author: Geir Nilsen { geirni@ifi.uio.no }

-- Created: Mars 3 2004

library ieee;
use ieee.std logic 1164.all;

package components is

component lcd is

generic(

—-— Assuming 100 MHz clock

-— Timing parameters for write operation

tcycE : integer = 50; -- Enable cycle time
PWEH : integer := 23; -- Enable pulse width (high level)
tEr : Integer = 1; -- Time rise
tEF : Integer = 1; -- Time fall
tAS : Integer = 4; -- Address setup time (RS, R/W to E)
tAH : integer = 1; -- Address hold time
tDSW : integer := 8; -- Data set-up time
tH : Integer := 1; -- Data hold time
-— The instruction delay needs an n+l1 bit counter
upperDelaylndex : integer := 20 -- All bits = "1" => 20.9 ms
)
port
clk in std _logic;
rst in std _logic;
-- lcd_data(8) = RS (register select)

lIcd _data_in
lIcd _data out

Icd _en

lcd_rdy
lcd_start

)

e o o NS

end component;

in std logic_vector(8 downto 0);
out std _logic vector(8 downto 0);
out std_logic;
out std_logic;
in std logic

component pButton is

generic(
delay
)
port
clk

integer

> In

= 1000000 -- 0.01s at 100 MHz

std_logic;

164

(min 500
(min 230
(max 20
(max 20
(min 40
(min 10
(min 80
(min 10

ns)
ns)
ns)
ns)
ns)
ns)
ns)
ns)

48 rst :in std_logic;
49 pButtonln : in std_logic;
50 pButtonOut : out std_logic
51);

s2 end component;

54 component rs232rx 1is
55 generic(

56 divisor : integer := 1;

57 half . Integer := 434

58);

59 port

60 clk - in std_logic;
61 rst - in std_logic;
62 rxd : In std_logic;
63 rx_data :

64 rx_data_rdy
65);

66 end component;

out std_logic

68 component rs232tx 1is
69 generic(

70 divisor : integer := 1;

7 half . integer := 434
72);

73 port

74 clk > in std_logic;
75 rst : in std_logic;
76 t>x_rdy : out std_logic;
77 tx _start : in std logic;
78 tx_data i |

79

80 txd : out std_logic
81);

s2 end component;

sa component led_flash is
85 generic(

86 litetime : integer := 1000000
87);

88 port

89 clk - in std_logic;

90 rst > in std_logic;

o1 sig_in : in std logic;

92 led reg : out std logic

93);

94 end component;
95

9% end components;

devboard.ucf

o1 #
02 # User defined constraints
03 #

out std_logic_vector (7

-- 100 MHz

-- Bit to FPGA from DP9

downto 0); -- Bits from rxd

in std logic_vector(7 downto 0); --

-- 1/100 s @

oa # Author: Geir Nilsen { geirni@ifi.uio.no }

o5 #

o6 # Created: Oct 7 2003
o7 #

08

09

165

-— "1" when rx_data is ready

100 MHz

Ready to send data to DP9
Start sendig tx_data
Byte to write to DP9
(from FPGA) using txd
Bit from FPGA to DP9

100 MHz

HHH A

w1 T
FHRHR AEHEESER Developement Board T
#Hitt HHHHT T

HH AR

clk period
net "i_clk" period = 10.00;

CLK.CAN.HS / Input / On-board 100 MHz LVTTL Oscillator
net "i_clk”™ loc = "Vv12";

User LED

net "led<1>" loc
net "led<2>" loc
net "led<3>" loc
net "led<4>" loc

"v8" ; # DS7 / LED1
"We™ ; # DS8 / LED2
"U10"; # DS9 / LEDS3
"V10'"; # DS10 / LED4

User Push Button Switches

net "'rst" loc = "V15" ; # SW3 / FPGA._RESET
net "'push<l1>" loc W7 ; net "push<1>" pullup; # SW4 / PUSH1

net "'push<2>" loc "W5'" ; net "'push<2>" pullup; # SW5 / PUSH2

net "'push<3>" loc "AA12'; net "'push<3>" pullup; # SW6 / PUSH3

User DIP switch
NOTE: Reversed to make DIP(8) LSB

net "dip<8>" loc = "W13"; net "dip<8>" pullup; # DIP8 / User Switch
net “dip<7>" loc = "Y13"; net "dip<7>" pullup; # DIP7 / User Switch
net "'dip<6>" loc = "W14"; net "dip<6>" pullup; # DIP6 / User Switch
net “dip<5>" loc = "W15"; net "dip<5>" pullup; # DIP5 / User Switch
net "dip<4>" loc = "Y15"; net "dip<4>" pullup; # DIP4 / User Switch
net "dip<3>" loc = "W16"; net "dip<3>" pullup; # DIP3 / User Switch
net "dip<2>" loc = "Y16"; net "dip<2>" pullup; # DIP2 / User Switch
net "dip<l>" loc = '"V16"; net "dip<l>" pullup; # DIP1 / User Switch

LCD Interface
NOTE: lcd _data(8) is used as RS

net "lcd_data_out<0>" loc = "D7'; # LCD data bit O
net "lcd_data out<l1l>" loc = "F9'; # LCD data bit 1
net "lcd _data out<2>" loc = "D5"; # LCD data bit 2
net "lcd _data out<3>" loc = "D6'"; # LCD data bit 3
net "lcd_data out<4>" loc = "C7'; # LCD data bit 4
net ""lcd_data_out<5>" loc = "D8"; # LCD data bit 5
net "lcd_data out<6>" loc = "C8"; # LCD data bit 6
net "lcd _data out<7>" loc = "E8"; # LCD data bit 7
net "lcd_data_out<8>" loc = "E6"; # LCD Register Select (RS)
net "lcd_en” loc = "E7"; # LCD Enable Signal
RS232

The names of these two pins have been switched
#net "txd2" loc = "W7'; # Bit from DP9 to FPGA
net "rxd2" loc = "U9"; # Bit from FPGA to DP9

bt e B L e #

BRI BRI B
it Developement Board HIHIHHTH H
BT B #

R R R R R R A A R

166

NN N NN N NN

Input
Input
Input
Input
Input
Input
Input
Input

RPNWAOOO N

71 HHH R AR

72 # HH HHH R H
73 HHHHE #HHHEREHHE P160 Communications Module #itH###HitH
74 HH# HHHHHHHHE HHAHHH

B # HH AR

77 # RS232

78 net "txdl'" loc
79 net "rxdl" loc
80

“"E14'; # RS232_TX / JX1 Pin B12
"F14'; # RS232_RX / JX1 Pin B13

81 HHHHH R #
82 HtHH T HHHHHH Ht#H
83 Hit###HHHE P160 Communications Module #i#t###itHHH#H HitHHH
84 HHHHHEH HHAHHHHH R #
85 HHHHHHHHHHHH AR R R R R R R R R

F.4 Source2html| Converters

The source files in this report have been converted to html and then imported into Word without loosing
the formatting.
e src2html.css
o This is the file that defines the formatting of the html files. It is common to all the files in
this Appendix.
e vhdI2html
o Originally found on the web Major modifications have been made. It now handles ucf
files also. Takes one file at a time.
e src2html
0 A script that converts C, Perl, VHDL and ucf files to html by invoking vhdi2html and
Source-Highlight. Takes one file at a time.
e to_html
o This is an example of how to convert many files at once.

Source-Highlight is found at:
http://www.gnu.org/software/src-highlite/

src2html.css
body { color:#000; background-color:#fff; }

pre _linenum { color:#000; font-size:0.6em; vertical-align:middle; }
pre .blankLine { color:#fff; } /* For compatibility with MS_Word */
pre .comment { color:#080; }

pre .keyword { color:#00f; font-weight:bold; }

pre .type { color:#00Ff; }

pre .function { color:#800; font-weight:bold; }

pre .string { color:#800; }

pre .number { color:#000; }

pre .preproc { color:#008; font-weight:bold; }

pre .normal { color:#000; }

pre .symbol { color:#000; } /* _,"#% ... */

pre .cbracket { color:#000; } /* Curly brackets */

pre .attribute { color:#088; }

pre .pack { color:#000; font-weight:bold; }

167

vhdl2html
#1/usr/bin/perl

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059

HFHHFHHFHHFHHFHHFHHFFHFHEHFFEHFEHSF HHEHFHEHFEFEH O FHEFHEFHFHHH

This script converts a VHDL file to HTML with all VHDL keywords
in bold face type.

Rex Hill

Applied Research Laboratory
Washington University in St. Louis
rex@arl .wustl .edu

Originally found at http://www.veritools-web.com/vhdl2html_htm

Modified for css use and more syntax categories by
Benj Carson <benjcarson@digital junkies.ca>

Note: style.css must now be stored in the same directory
as this program®"s output.

This file was found at:
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/2002_w/misc/vhdi2html/

Major changes have been made to this file.

Modified to handle comments properly.

Code added to handle quotes. Does not format words in quotes now.
Trailing blanks are not written to html.

Switches are added.

Added support for ucf file format.

A link to "'style.css" is added, so that it dosen"t have to be in
the same directory as the HTML-File(s).

Deleted files "vhdl.*". Words to be substituted are now included in this file.
The substitutions of words are now case insensitive.
All keywords etc are converted to lowercase.

Geir Nilsen <geirni@ifi.uio.no>

Print usage and exit
sub msg {
print
"\n".
" Example usage with aquired switches:\n".
" \"vhdiZ2html .pl -s vhdl -i counter.vhd -o counter.vhd.htmI\n".
" Switches:\n".
" -n Write line numbers. Default is no line numbers\n".
" -s Specify source type; vhdl or ucf\n".
" -1 Input file\n".
" -0 Output file\n™.
" -T Text between html title tags\n'.
" -c Path to css file. Default:\n".
" http://heim.ifi.uio.no/~geirni/src2html.css\n".
"\n"';

168

060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

exit(-1);

ucf: Words to format. Lot"s of TODO stuff here...
%subst_ucf =

keyword =>

["loc™,"n

)

,'period”,"pul lup™, " pul Idown"]

vhdl: Words to format

%subst_vhd

keyword =>

["abs" 'faccess
"assert", "attr" "attrlbute
"‘comp™,"component™,"’
""constant',''disconnect"’, "downto

"exit","file

alias™,"all

after and arch architecture array',
begin","block" "body","buffer" "bus","case",
conditional" *conf","configuration',cons",

", "else elself" “elsif","end"”, "entity",

function . generate ,''generic","group”,

cond

for func

""guarded", "|f" "impure" "in" “inertial"”,"inout”,"inst","instance","is",
"Iabel" “library',"linkage","literal™,"loop™, "map™, "mod", *nand™, ""new",
"next","nor", " not", "null","of"","on"", "open™, "or", "others", "out", ""pack"’,
"package","port", ""postponed",'procedure,process", "pure’,"range", "record",
"register","reject","rem", " "report", "return","rol" ,"ror",""select",""severity",
“shared","sig",""signal","sla","sll","sra","srl1",""subtype", ""then",""to",
“transport”, type", "unaffected"”, "units","until™,"use","var" ,"variable"
“"wait',"when","while","with","xnor",""xor"],

attribute =>

[‘active',"ascending","base",""delayed","driving","driving_value","event",
“foreign',high","image", " instance_name","last _active","last_event",

“"last_value","left","leftof"”,"length™,"low", "path_name",

pos pred”,

quiet',"reverse_range',"right","rightof","simple_name", "stable" "succ",
"transaction","val","value'],

pack =>

["ieee","math_complex',"math_real"," numeric_bit","numeric_std"

"std_logic_1164","std_logic_arith”,”std_logic misc","std_logic_signed",

"std_logic_textio","std logic_unsigned", "textio

type =>

["b|t" "bit_vector","boolean","character
"file_open_status
"severity level
"std_ulogic”,

unisim’,"vcomponents'],

","delay_length","file_open_kind"
", integer”,"line natural™,positive”, " "real”

side™, "'signed", "std_logic" "std_loglc_vector",

std _ulogic_vector',"string", "text"”,"time","unsigned'],

function =>

[‘conv_integer™,
"endflle" "ext" “falling_ edge
"resolved

conv_signed","conv_std logic_vector",'conv_unsigned"
LIS X now read readllne" “"resize",

rising_edge", "rotate_left" "rotate_rlght","shlft_left",

"shlft_rlght" “shl™,"shr","std_match","sxt","to_01","to_bit","to_bitvector",

""to_integer",
""to stduloglcvector

to_signed","to stdloglcvector to stduloglc
","to_unsigned","to_ux01","to x01", "to_xOlz","write",

"writeline]

);

Init variables to store arguments given at the command line

$num
$source
$infile
$outfile
$title
$cssPath

0; # 1 when "-n" is given at the command line

"http://heim.ifi.uio.no/~geirni/src2html.css";

169

121
122
123
124
125
126
127
128
129
130
131
132

134
135
136
137

139
140
141
142
143
144
145
146
147
148
149
150
151
152

154
155
156

Line

numbers will start on 1

$lineNum = 1;

Parse ARGV

while(@ARGY) {
$option = shift;
if($option eq "-i") {

$infile = shift;

b
elsif($option eq "-0") {

$outfile = shift;

}
elsif($option eq "-n") {

$num = 1;

3
elsif($option eq "-s") {

$source = shift;

b
elsif($option eq "-c™) {

$cssPath = shift;

}
elsif($option eq "-T) {

else {
msgQ);
3
Check parameters and determine type of conversion
if($source eq " | $infile eq " | $outfile eq "){
msgQ);

$title = shift;

}
elsif($source eq "vhdl'™){
%subst = %subst vhdl;

$commentType = "--"";

157 }
elsif($source eq "ucf){
%subst = %subst ucf;

158
159

160 $commentType = "#"; # html escape code for “#°
161 }

162 else {

163 msg(Q);

164 }

165

166 # Read file that is to be converted

167 Open(SOURCEFILE, "<"_$infile) or die

168 " Can"t open file for read: ".$infile."\n";
169 @lines = <SOURCEFILE>;

170 close(SOURCEFILE);

171
172
173
174
175
176
177
178
179
180
181

Open

conversion file for write

open(HTMLFILE, ">"_$outfile) or die

Can"t open file for write: ".$outfile.'"\n";

Print out the HTML header information
print HTMLFILE
"<html>\n".

<head>\n".
<title>"_$title."</title>\n".
<link rel=\"stylesheet\" type=\"text/css\"

170

href=\"""_$cssPath."\"">\n"

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

234
235
236
237
238
239
240
241
242

" </head>\n".

" <body>\n".

Il\nll-

"<pre><tt>"; # No newline here

Conversion:
for $line(@lines){

Global substitutions.
1) Bugfix for ucf:
"<1>" will be invisible when importing the html document into MS-Word.

Fix: Change "'<1>" to "<l>"

2) Quotes - ' - are messing up colors iIn Emacs
$line =~ s/&/&/g; # &

$line =~ s/</&l1t;/g; # <

$line =~ s/>/8>/J; # >

$line =~ s/\'"/"/g; # "

Print line numbers
iT($num){
print HTMLFILE
""".
0" x (length($#lines+1)-length($lineNum)).
$lineNum++."" "';

}

Remove newline temporarily; trailing blanks permanently
$line =~ s/\n//;
$line =~ s/\s+%$//;

Add an empty comment to an empty line
(for equal line spacing when importing the html-document into MS-Word)
if($line eq ""D){

print HTMLFILE *""_$commentType."'";
}

Handle comments
$comment = ;
if($line =~ /$commentType/){

($line, $comment) = split(/$commentType/, $line, 2);

$comment = *'"_$commentType.$comment."";

}

Restore newline
$comment .= '"\n";

Handle quotes and conversion
while($line ne ""){

There may be many quotes for each line
$quote = "';
if($line =~ /"/){
($line, $quote, $rest) = split(/"/, $line, 3);
$quote = ''""_$quote.
"<gpan class=\"symbol\''>"";

else{
$rest = ",
}

171

243

244 # Conversion

245 $line =~ 4O AN HEHASAS
NIV ININCNFINEINTINAND [&(amp [quot] e gt) ;) /$1<\/span>/g;

246 for $key(keys %subst){

247 for($i=0; $1 <= $#{Ssubst{Skey}}; Fi++){
248 $line =~ s/\b($subst{Skey}[$i])\b/\L$1<\/span>/gi ;

249 }

250 3}

251

252 print HTMLFILE $line.$quote;

253 $line = $rest;

254 }

255

256 print HTMLFILE $comment;

257)

258

259

260

261 # Write end tags to HTML file
262 print HTMLFILE

263 '</tt></pre>\n".
264 "\n"".

265 " </body>\n".
266 "</htmI>\n"";

267

268 close(HTMLFILE);

src2html
oox #1/local/bin/perl5 -w

002

003 #

oosa # Created: July 20 2004

005 #

oos # Author: Geir Nilsen <geirni@ifi.uio.no>
007 #

oos # Description:

o9 # See subroutine ""msg" for usage and description
010 #

011

012

013

o1 # Print help/usage

o5 sub msg {

016 print

017 "\n".

018 ' Uses Source-highlight to convert Perl and C to html. The converted\n™.
019 " html-file is again converted for compatibility with css™.

020 "\n"".

021 " Example usage (Perl, C) with aquired switches:\n".

022 " src2html -f html -s perl -i infile.pl -o outfile.pl._htmI\n".
023 Y e \n".

024 " Uses vhdI2html to convert VHDL and ucf files to html".

025 "\n"".

026 " Example usage (vhdl, ucf) with aquired switches:\n".

027 " src2html -s vhdl -i counter.vhd -o counter.vhd._html\n".

028 Y e \n".

029 " Switches:\n".

172

030 " -f Source-highlight only: html, xhtml, esc\n".

031 " --no-doc Source-highlight only: Cancel -d switch\n".
032 "\n"".

033 " -n Write line numbers. Default is no line numbers\n".
034 " -s Specify source type; Perl, C, vhdl, ucf\n".

035 " -1 Input File\n".

036 " -0 Output file\n™.

037 " -T Text between html title tags\n'.

038 " -c Path to css file\n".

039 "\n"";

040 exit(-1);

041 }

042
oa3 # Modify html-file (converted by source-highlight)
o442 sub modify {

045 open(HTMLFILE, "<"_.$outfile) or die

046 " Can"t open file for read: ".$outfile.'\n";

047 @lines = <HTMLFILE>;

048 close(HTMLFILE);

049

050 open(HTMLFILE, ">"_$outfile) or die

051 " Can"t open file for write: "_.$outfile.'\n";

052

053 if('$nodoc_sw eq ""){ # Print out the HTML header information

054 print HTMLFILE

055 "<htmI>\n".

056 " <head>\n".

057 " <title>"_$title."</title>\n".

058 " <link ".

059 “"rel=\"stylesheet\" type=\"text/css\" href=\"""_$cssPath.""\"">\n".
060 " </head>\n".

061 " <body>\n".

062 "\n"";

063 }

064

065 # Do modifications

066 for $line(@lines){

067

068 # A character must be added to blank lines for compatibility with MS-Word
069 # 1f size of linenumbers are smaller than the remaining text; for example
070 # 0.6em. In Word, these lines will have hight 0.6 rather than 1.
071 $linenumber = "'';

072 iT($line =~ /MN\d*:\s/){ # Example: '001: ™

073 $line =~ s/~"(\d*):\s//; # Remove linenumber temporarily

074 $linenumber = ""_$1._"<\/span\> '; # 001 "
075

076 $line =~ s/\n//; # Remove newline temporarily

077 $line =~ s/\s+$//; # Remove trailing blanks permanently

078 if($line eq ""){

079 $line = "";

080 if($source eq "perl™){

081 $line .= "#";

082

083 elsif($source eq '"c'") {

084 $line .= "//";

085 3}

086 $line .= """;

087

088 $line = $linenumber.$line."\n"; # Restore $line

089

090 # Remove newline #1, #2 and last

173

091
092
093
094
095
096
097
098
099
100
101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

139
140
141
142
143
144
145
146
147
148
149
150
151

$line =~ s/(<pre>|<tt>|<\/tt>)\n/$1/;

Fixed by patch src/genhtml/htmldocgenerator.cc

print HTMLFILE $line;
}

if(1$nodoc_sw eq "){

print HTMLFILE # Write end tags to HTML fTile

"\n"".
" </body>\n".
"</htmI>\n"";

}
close(HTMLFILE);

$F_sw = $n_sw = $s_sw = $i_sw =
$source = $infile = $outfile =

Parse ARGV
while(@ARGV) {

$option = shift;
if($option eq " n") {

$n_sw .= "-n *;

$o_sw
$title

$c_sw = $T_sw =

$cssPath = "™';

$nodoc_sw = """';

}
elsif($option eq "-f") { # source-highlight only (aquired)

$f SW = (1] f Il;
$f_sw .= shift;
$F sw .= " "

}
elsif($option eq "--no-doc™) { # source-highlight only

$nodoc_sw .= '*--no-doc

b
elsif($option eq "-s™) {

$S_SW .= "—S n;
$source = shift;
$s sw .= $source.™ ";

b
elsif($option eq "-i") {

$i_sw .= "-1 ";
$infile = shift;
$i_sw .= $infile." ";

b
elsif($option eq "-0") {

$0 sw .= "-0 ";
$outfile = shift;
$0 sw .= $outfile." ";

}

elsif($option eq "-c') {
$c sw = "-c '';
$cssPath .= shift;
$c_sw .= $cssPath.™ *;

}

elsif($option eq "-T") {
$T_sw = "-T *;
$title .= shift;
$T_sw .= $title." *;

}

else {
msgQ;

174

152 3}

153 }

154

155 # Check parameters and convert

156 IF($s_sw eq "™ | $i_sw eq " | $o_sw eq "){
157 msg(Q);

158 }

150 elsif($source eq "perl” | $source eq ""c'){
160 if($f sw eq "){

161 msg(Q;

162 3}

163 print

164 “src2html "_$infile." =>\n".

165 " "_$outfile.'"\n";

166 system(*'source-highlight

167 $F _sw.$n_sw.$s_sw.$i_sw.$o_sw.$c_sw.$T_sw.$nodoc_sw);
168 modify(); # Modify converted file

169

170 elsif($source eq "vhdl"™ | $source eq "ucf){
171 print

172 “src2html "_$infile." =>\n".

173 ' " Soutfile.'\n";

174 system('vhdi2html .

175 $n_sw.$s_sw.$i_sw.$o_sw.$c_sw.$T_sw);
176 }

177 else {

178 msg(Q);

179 }

180
181 system(*'chmod 755 " .$outfile);

to_html
on #1/local/bin/perl5 -w

02

03 #

o4 # Created: June 30 2004

os H#

os # Author: Geir Nilsen <geirni@ifi.uio.no>
o7 #

08

oo use File::Basename;
10

11 $html_dir
12 $css

13 @Files

14

15 print "\n";
16

7 For $File(@Files){

""/hom/geirni/www_docs/research/ise/html/"; # Output dir
“http://heim_ifi.uio.no/~geirni/src2html.css";
“find cam common ids devboard”;

18 $File =~ s/\n//;

19

20 it (-F $File){

21 if ($Ffile =~ /\.vhd$/){ # VHDL

22 system(*'src2html -n -s vhdl -i "_$Ffile.
23 " -0 ".$html_dir.$file."_html -c ".%css.
24 " -T " _basename($file));

25 }

26 elsif ($file =~ /_ucf$/){ # ucf

27 system(*'src2html -n -s ucf -i "_$File.
28 " -0 ".$html_dir.$file."_html -c ".$css.

175

" " T "_basename($Ffile));

30 3}

a1 elsift ($file =~ /_pl$/){ # Perl

32 system(*'src2html -f html -n -s perl -i "_$file.
33 " -0 ".$html_dir.$file.”_.html -c ".%css.
34 " -T "_basename($file)." --no-doc™);

35 3}

36 elsift ($file =~ N\.c$/H{ # C

a7 system(*'src2html -f html -n -s c -1 ".$File.
38 " -0 ".$html_dir.$file.”_.html -c ".%css.
39 " -T "_basename($file)." --no-doc™);

40 3}

a1 3}

2 }

43

44 $thisfile = "to_html";

4s system('src2html -f html -n -s perl -i ".$thisfile.

46 " -0 ".$thisFile."_html -c ".$css.” -T ".$thisfFile);
47

48 print "\n"';

49

so system(’'chmod 755 -R ".$html_dir);

F.5 Optimization of Components in CAM

This is a “one-hot” encoder that can be used with the CAM as described in this project. Due to little time
left of writing this report, it has not been used.

encode_opt.vhd

01 ——

02 —— File : encode_opt.vhd

03 —— Created : August 3 2004

o4 —— Project : cam srll6e

os —— Author : Geir Nilsen { geirni@ifi.uio.no }

06 ——

o7 —— Description:

s —— An attempt of optimizing the encoder for speed and a large number of
09 —— inputs. This encoder is "one-hot".

10 ——

11

12 library ieee;

13 use ieee.std_logic_1164.all;
14

15 entity encode is

16 port(

17 -— "1" if match is found

18 match : out std_logic;

19 -- Match address

20 addr : out std_logic vector(4 downto 0);
21 -- match_bus from CAM-words

22 match_bus : in std_logic_vector(31 downto 0)
23);

24 end encode;

25

26 architecture encode of encode is
27 begin

28

29 addr <= "00000'" when match_bus(0) = "1" else

176

30 00001 when match_bus(1) = 1" else
31 '*00010" when match_bus(2) = "1" else
32 ""00011" when match_bus(3) = "1" else
33 ''00100" when match_bus(4) = "1" else
34 "'00101" when match_bus(5) = "1 else
35 ''00110" when match_bus(6) = 1" else
36 00111 when match_bus(7) = 1" else
37 ''01000" when match_bus(8) = "1 else
38 "'01001" when match_bus(9) = "1 else
39 ''01010" when match_bus(10) = "1 else
40 01011 when match_bus(11l) = "1 else
a1 01100 when match_bus(12) = "1 else
42 "'01101" when match_bus(13) = "1° else
43 '"01110" when match_bus(14) = "1 else
44 01111 when match_bus(15) = "1 else
45 10000 when match_bus(16) = "1" else
46 10001 when match_bus(17) = "1" else
a7 10010 when match_bus(18) = "1" else
48 ""10011" when match_bus(19) = "1" else
49 10100 when match_bus(20) = "1 else
50 10101 when match_bus(21) = "1 else
51 10110 when match_bus(22) = "1" else
52 10111 when match_bus(23) = "1" else
53 '"11000" when match_bus(24) = "1 else
54 11001 when match_bus(25) = "1 else
55 11010 when match_bus(26) = "1" else
56 '"11011" when match_bus(27) = "1" else
57 '"11100" when match_bus(28) = "1" else
58 ""11101" when match_bus(29) = "1" else
59 11110 when match_bus(30) = "1 else
60 "11111" when match_bus(31) = "17;

61

62 —— Generate the match signal if one or more match(es) is/are found

63 match <= "0" when match_bus =

64 **00000000000000000000000000000000""
65 else "1°;

66

67 end encode;

177

178

Lo N o o1 b

10
11

12
13

14
15

16
17

BIBLIOGRAPHY

Peter Bellows et al. GRIP: A Reconfigurable Architecture for Host-Based Gigabit-Rate
Packet Processing. FCCM 2002.

C. Jason Coit et al. Towards Faster String Matching for Intrusion Detection or Exceeding

the Speed of Snort. In Proc. of DARPA Information Surviability Conference and
Exposition, DISCEXII, 2001.
B. L. Hutchings et al. Asswtmg Network Intrusion Detection with Reconfigurable

Hardware. In Proc. of the 10™ Annual IEEE Symposium on Field-Programmable Custom

Computing Machines. FCCM 2002.

S. Dharmapurikar et al. Deep packet inspection using parallel Bloom filter.

In Proc. of Hot Interconnections 11 (Hotl-11), Stanford, CA, 2003.

D. E. Tylor et al. Scalable IP Lookup for Internet Routers.

In IEEE journal on selected areas in communications, VVol. 21, No. 4, May 2003.
Shaomeng Li et al. Exploiting Reconfigurable Hardware for Network Security.
FCCM 2003.

Paul E. Proctor. The Practical Intrusion Detection Handbook.

Prentice Hall PTR, 2001. ISBN 0-13-025960-8.

Jay Beale et al. Snort 2.0 Intrusion Detection[p. 1-60].

Syngress Publishing, Inc. 2003. ISBN 1-931836-74-4.
http://www.iss.net/security_center/advice/Underground/Hacking/Methods/Technical/
Spoofing/default.htm

http://www.snort.org/

James Moscola et al. Implementation of a Content-scanning Module for an Internet
Firewall. FCCM 2003.

John Villasenor, William H. Mangione-Smith. Configurable Computing.

In Scientific American, 6/97.

David Van den Bout. The practical Xilinx designer lab book [p. 23-31].

Prentice Hall, 1999. ISBN 0-13-021617-8.

http://www.optimagic.com/fag.html

J-L Brelet. An Overview of Multiple CAM Designs in Virtex Family Devices.
Xilinx Application Note 201, September 23, 1999 (Version 1.1).

J-L Brelet and B. New. Designing Flexible, Fast CAMs with Virtex Family FPGAs.
Xilinx Application Note 203, September23, 1999 (Version 1.1).

Xilinx Virtex-11 Pro Platform FPGAs. Functional Description. Datasheet ds083

179

18
19
20

21
22

Course at Institute of Physics, University of Oslo.

’Fys329: Data assistert konstruksjon av kretselektronikk™

Memec Design. Virtex-11 Pro(P4/P7) Development Board. User Guide, Version 4.0,
June 2004. PN# DS-Manual-2VP4/7-FG456.

Memec Design. P160 Communications Module. User Guide, Version 2.0,
December 2002. PN# DS-Manual MBEXP1.
http://www.beyondlogic.org/porttalk/porttalk.htm

Memec Design. Seiko LCD Operating Instructions (Provided by Memec).

180

